Mathematics 231

Lecture 3
Liam O'Brien

Announcements

- Reading
- Today

M\&M 1.2
30-44

- Next class

M\&M 1.2
45-47
M\&M 1.3
53-62

Numerical Measures of Center

- Mean
- Median
- Mode

Mean

- The mean is what is typically though of as the "average" value:

If there are n observations with values $x_{1}, x_{2}, \ldots, x_{n}$ the mean is the sum of these numbers divided by the number of observations: $\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n$
For example, if the data are $2,4,6,2,2$, the mean is $(2+4+6+2+2) / 5=3.2$.

Median

- The median is the "midpoint."
- The median is the point at which 50% of the observations are smaller, and 50% are larger.
- For example, if the data are $2,4,6,2,2$, we order them: $2,2,2,4,6$ and find the middle value.
- The median is 2 .

Mode

- The mode is the value that is observed the most often.
- The mode need not be unique - we can have two or more values that are observed the same (but most frequent) number of times.
- For example, if the data are $2,2,2,4,6$, the mode is 2 because it occurs the most often.

When are the Mean and Median Similar?

- When the shape of the distribution is symmetric, the mean and median are similar.
- When the distribution is "skewed" the mean is farther out in the "tail" than the median.
- It has been said that the "mean follows the tail."
- The median is much less sensitive to extreme observations (sometimes called "outliers").

Median and mean

Median

Example: Sample Data

- If the data are 2,2,2,4,6, consider replacing the 6 with 60.
- The mean changes to 15 , but median is still 2 .
- Which is more representative?

Example: Harvard Salary Survey

- In 1998, the entering class of 1973 was surveyed.
- Interested in determining the typical salary for a graduate of the big H 25 years after graduation.
- Mean salary: \$750,000
- Median salary: \$175,000
- Why such a large discrepancy?

Example: Expected Salary

- Mean $=\$ 372 \mathrm{k}$
- Median $=\$ 100 \mathrm{k}$
- How much variability is there? A lot? A little? How can we quantify it?

Percentiles

- If k marks the $p^{t h}$ percentile, then p percent of the data are less than or equal to k.
- Two common percentiles:
$-25^{\text {th }}$ percentile: sometimes called the $1^{\text {st }}$ (or lower) quartile, \mathbf{Q}_{1}
- $75^{\text {th }}$ percentile: sometimes called the $3^{\text {rd }}$ (or upper) quartile, \mathbf{Q}_{3}

Finding the Quartiles

1. Sort the observations in numerical order.
2. $\mathrm{Q}_{1}=$ median of the lower half of the list.
3. $\mathrm{Q}_{3}=$ median of the upper half of the list.

- We already know how to find the $2^{\text {nd }}$ quartile, Q_{2} - it's just the median.
- Note that if there are an odd number of observations, then don't include the median in the lists used in steps (1) and (2).

5-Number Summary

- We can now find the 5-number summary of a dataset. This is often used as a basic way to look at the distribution of the data.
- The 5 numbers are:

1. Smallest value
2. $1^{\text {st }}$ quartile
3. Median
4. $3^{\text {rd }}$ quartile
5. Largest value

Inter-quartile Range (IQR)

- The IQR is the spread (or range) in the middle half of the data; distance between the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles: $\mathrm{IQR}=\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$.
- This not only tells us something about the spread, but it can also help identify outliers.
- An observation is defined as an outlier if it falls more than $1.5 * \mathrm{IQR}$ above Q_{3} below Q_{1}.

Example: Expected Salary

- $1^{\text {st }}$ quartile $=\$ 100 \mathrm{k}$
- Median $=\$ 100 \mathrm{k}$
- $3^{\text {rd }}$ quartile $=\$ 200 \mathrm{k}$
- IQR $=\$ 200 \mathrm{k}-\$ 100 \mathrm{k}=\$ 100 \mathrm{k}$
- Does this indicate a lot of variability?

Variance and Standard Deviation

- Consider how we might measure the spread in terms of the distance of each observation from the mean:

$$
x_{i}-\bar{x}
$$

- What if we summed these distances for all observations?

$$
\sum_{i}\left(x_{i}-\bar{x}\right)=0
$$

Variance and Standard Deviation

- The variance is defined as (approximately) the average squared distance of the observations from the mean:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Here, n is the number of observations, and $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are the observations themselves.

Variance and Standard Deviation

- The standard deviation is usually denoted by s, and the simply the square root of the variance.

$$
s=\sqrt{s^{2}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Note that the standard deviation is in term of the original measurement units, but the variance is not.

Example: Expected Salary

- Variance $=2121929 \mathrm{k}$ (in squared dollars)
- Standard deviation $=\$ 1457 \mathrm{k}$

Numerical Summaries in Stata

. summ salary, d
Expected salary

	Percentiles	Smallest		
1\%	8	8		
5\%	45	18		
10\%	55	45	Obs	46
25\%	100	45	Sum of Wgt.	46
50\%	100		Mean	372.3043
		Largest	Std. Dev.	1456.684
75\%	200	450		
90\%	400	500	Variance	2121929
95\%	500	650	Skewness	6.481538
99\%	10000	10000	Kurtosis	43.34826

Boxplots

- A boxplot graphically displays several important features of a distribution, including the median, quartiles, and outliers.
- Boxplots are often useful for comparing the distributions for two or more groups (e.g., males vs. females).

Constructing a Boxplot

- Draw a box whose ends are at the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles (the width of the box is equal to the IQR).
- Draw a line through the box at the median.
- Any observations that are greater than $\mathrm{Q}_{3}+1.5 * \mathrm{IQR}$ or less than $\mathrm{Q}_{1}-1.5 * \mathrm{IQR}$ are considered to be outliers and are individually plotted.
- Draw lines from the ends of the box to the most extreme values that aren't outliers.

Example: Expected Salary

Example: Heights

Example: TV Viewing By Gender

Which Summary Measures to Use?

- Mean and standard deviation: These are sensitive to outliers and skewness and are more appropriate when the data distribution is fairly symmetric.
- Median and IQR: Far less sensitive to outliers, and less sensitive to skewness.

