Mathematics 231

Lecture 3 Liam O'Brien

Announcements

■ Reading

■ Today M&M 1.2 30-44 ■ Next class M&M 1.2 45-47

M&M 1.3 53-62

2

Numerical Measures of Center

- Mean
- Median
- \blacksquare Mode

Mean

■ The mean is what is typically though of as the "average" value:

If there are n observations with values $x_1, x_2, ..., x_n$ the mean is the sum of these numbers divided by the number of observations: $(x_1 + x_2 + ... + x_n)/n$ For example, if the data are 2,4,6,2,2, the mean is (2+4+6+2+2)/5=3.2.

Median

- The median is the "midpoint."
- The median is the point at which 50% of the observations are smaller, and 50% are larger.
- For example, if the data are 2,4,6,2,2, we order them: 2,2,2,4,6 and find the middle value.
- The median is 2.

5

Mode

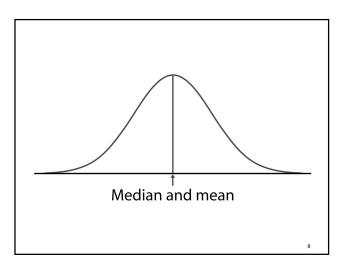
- The mode is the value that is observed the most often
- The mode need not be unique we can have two or more values that are observed the same (but most frequent) number of times.
- For example, if the data are 2,2,2,4,6, the mode is 2 because it occurs the most often.

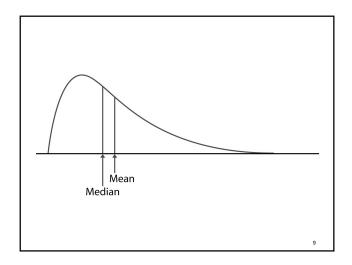
6

When are the Mean and Median Similar?

- When the shape of the distribution is symmetric, the mean and median are similar.
- When the distribution is "skewed" the mean is farther out in the "tail" than the median.
- It has been said that the "mean follows the tail."
- The median is much less sensitive to extreme observations (sometimes called "outliers").

-





Example: Sample Data

- If the data are 2,2,2,4,6, consider replacing the 6 with 60.
- The mean changes to 15, but median is still 2.
- Which is more representative?

10

Example: Harvard Salary Survey

- In 1998, the entering class of 1973 was surveyed.
- Interested in determining the typical salary for a graduate of the big H 25 years after graduation.

Mean salary: \$750,000Median salary: \$175,000

■ Why such a large discrepancy?

Example: Expected Salary

- Mean = \$372k
- Median = \$100k
- How much variability is there? A lot? A little? How can we quantify it?

Percentiles

- If k marks the p^{th} percentile, then p percent of the data are less than or equal to k.
- Two common percentiles:
 - 25th percentile: sometimes called the 1st (or lower) quartile, **Q**₁
 - 75th percentile: sometimes called the 3rd (or upper) quartile, **Q**₃

13

Finding the Quartiles

- 1. Sort the observations in numerical order.
- 2. $Q_1 = \text{median of the lower half of the list.}$
- 3. Q_3 = median of the upper half of the list.
- We already know how to find the 2^{nd} quartile, $Q_2 it$'s just the median.
- Note that if there are an odd number of observations, then don't include the median in the lists used in steps (1) and (2).

14

5-Number Summary

- We can now find the 5-number summary of a dataset. This is often used as a basic way to look at the distribution of the data.
- The 5 numbers are:
 - 1. Smallest value
 - 2. 1st quartile
 - 3. Median
 - 4. 3rd quartile
 - 5. Largest value

Inter-quartile Range (IQR)

- The IQR is the spread (or range) in the middle half of the data; distance between the 1st and 3rd quartiles: IQR=(Q₃-Q₁).
- This not only tells us something about the spread, but it can also help identify outliers.
- An observation is defined as an outlier if it falls more than 1.5*IQR above Q₃ below Q₁.

Example: Expected Salary

- 1st quartile = \$100k
- Median = \$100k
- 3rd quartile = \$200k
- \blacksquare IQR = \$200k \$100k = \$100k
- Does this indicate a lot of variability?

17

Variance and Standard Deviation

■ Consider how we might measure the spread in terms of the distance of each observation from the mean:

$$x_i - \overline{x}$$

■ What if we summed these distances for all observations?

$$\sum_{i} (x_i - \overline{x}) = 0$$

18

Variance and Standard Deviation

■ The **variance** is defined as (approximately) the average squared distance of the observations from the mean:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

■ Here, n is the number of observations, and $x_1, x_2, ..., x_n$ are the observations themselves.

Variance and Standard Deviation

■ The standard deviation is usually denoted by *s*, and the simply the square root of the variance.

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

■ Note that the standard deviation is in term of the original measurement units, but the variance is not.

Example: Expected Salary

- Variance = 2121929k (in squared dollars)
- Standard deviation = \$1457k

umm salarv. d

. sur	mm salary, d			
		Expected sal	lary	
	Percentiles	Smallest		
1%	8	8		
5%	45	18		
10%	55	45	0bs	46
25%	100	45	Sum of Wgt.	46
50%	100		Mean	372.3043
		Largest	Std. Dev.	1456.684
75%	200	450		
90%	400	500	Variance	2121929
95%	500	650	Skewness	6.481538
99%	10000	10000	Kurtosis	43.34826
				22

Numerical Summaries in Stata

21

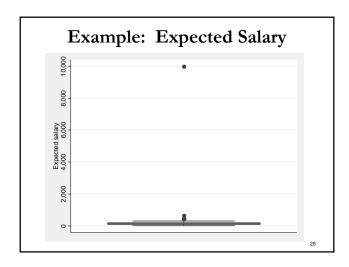
Boxplots

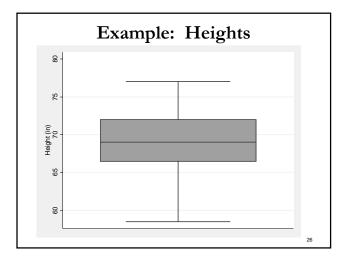
- A **boxplot** graphically displays several important features of a distribution, including the median, quartiles, and outliers.
- Boxplots are often useful for comparing the distributions for two or more groups (e.g., males vs. females).

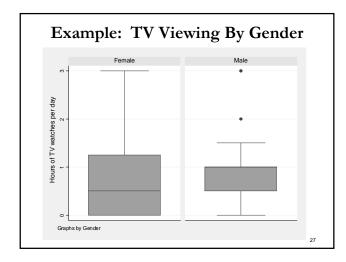
23

Constructing a Boxplot

- Draw a box whose ends are at the 1st and 3rd quartiles (the width of the box is equal to the IQR).
- Draw a line through the box at the median.
- Any observations that are greater than Q₃+1.5*IQR or less than Q₁-1.5*IQR are considered to be outliers and are individually plotted.
- Draw lines from the ends of the box to the most extreme values that aren't outliers.







Which Summary Measures to Use?

- Mean and standard deviation: These are sensitive to outliers and skewness and are more appropriate when the data distribution is fairly symmetric.
- Median and IQR: Far less sensitive to outliers, and less sensitive to skewness.