Mathematics 231

Lecture 29 Liam O'Brien

Announcements

Reading

■ Today M&M 10.2 579-583

■ Next class M&M 10.1 559-576

ANOVA vs Linear Regression

- The ANOVA is analogous to running a linear regression model with indicator functions for the group categories.
- An **indicator function** is a function that equals 1 if a certain condition is true, and 0 otherwise.
- For example, if measurement *i* came from group 1, then we could denote this by $I_i(group 1)=1$.

ANOVA vs Linear Regression

■ If we have *K* groups, we can describe those with *K-1* indicator functions.

Let us denote the rating measurement for subject i by y_i . Then a regression model could be specified relating y_i to the ad from which measurement i came.

$$\hat{y}_i = \beta_0 + \beta_1 I_i (Affirm) + \beta_2 I_i (Control)$$

For Affirming ad: $\hat{y}_i = \beta_0 + \beta_1$

For Control ad: $\hat{y}_i = \beta_0 + \beta_2$

For Undermining ad: $\hat{y}_i = \beta_0$

Thus, each ad has its own expression for the average rating.

ANOVA vs. Linear Regression

- This mode is an example of a multiple regression model.
- Multiple regression is a regression model that has a single outcome that is predicted by more than one predictor.
- In this case, we have two predictors both indicators of specific groups.
- We'll cover how to do this in Stata later, but it's the same procedure you used before.

Example: Ad Ratings

. regress rating adA adC

Source	SS +	df 	MS 		Number of obs F(2, 124)	
Model Residual	18.828255 76.3843434		4141275 1600277 		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1977
Total	95.2125984	126 .75	5655543		Root MSE	= .78486
rating	 Coef. +	 Std. Err.	t 	 P> t 	[95% Conf.	Interval]
adA adC _cons	.5464646 .9075758 4.509091	.1682594 .1682594 .1058303	3.25 5.39 42.61	0.001 0.000 0.000	.2134321 .5745432 4.299623	.8794972 1.240608 4.718559

Example: Ad Ratings

. oneway rating group

Analysis of Variance									
Source	SS	df	MS	F	Prob > F				
Between groups	18.828255	2	9.4141275	15.28	0.0000				
Within groups	76.3843434	124	.61600277						
Total	95.2125984	126	.755655543						

Bartlett's test for equal variances: chi2(2) = 2.6669 Prob>chi2 = 0.264

ANOVA vs Linear Regression

- Note that the ANOVA table and the regression output are identical.
- ANOVA is simply a linear regression with categorical predictors.
- What we called "within groups MS" is the MSE (mean square error, or mean square residual) in the regression model.
- What we called "between groups MS" in the mean square model in the regression model.