Mathematics 231

Lecture 29 Liam O'Brien

Announcements

■ Reading

■ Today M&M 10.2 579-583 ■ Next class M&M 10.1 559-576

2

ANOVA vs Linear Regression

- The ANOVA is analogous to running a linear regression model with indicator functions for the group categories.
- An **indicator function** is a function that equals 1 if a certain condition is true, and 0 otherwise.
- For example, if measurement i came from group 1, then we could denote this by $I_i(group\ 1)=1$.

For Control ad: $\hat{y}_i = \beta_0 + \beta_2$

For Control ad: $y_i = \beta_0 + \beta_2$ For Undermining ad: $\hat{y}_i = \beta_0$

For Affirming ad: $\hat{y}_i = \beta_0 + \beta_1$

K-1 indicator functions.

Thus, each ad has its own expression for the average rating.

 $\hat{y}_i = \beta_0 + \beta_1 I_i (Affirm) + \beta_2 I_i (Control)$

iverage rating.

ANOVA vs Linear Regression

 \blacksquare If we have *K* groups, we can describe those with

Let us denote the rating measurement for subject i

by y_i . Then a regression model could be specified

relating y_i to the ad from which measurement i came.

_

ANOVA vs. Linear Regression

- This mode is an example of a multiple regression model.
- Multiple regression is a regression model that has a single outcome that is predicted by more than one predictor.
- In this case, we have two predictors both indicators of specific groups.
- We'll cover how to do this in Stata later, but it's the same procedure you used before.

5

_	ing adA adC					
	SS				Number of obs F(2, 124)	
	18.828255				F(2, 124) Prob > F	
	76.3843434				R-squared	
Total	95.2125984	126 .	755655543		Root MSE	= .7848
rating			r. t		[95% Conf.	Interval
adA					.2134321	.879497
					.5745432	
_cons	4.509091	.105830	3 42.61	0.000	4.299623	4.71855

Example: Ad Ratings

Analysis of Variance
Source
SS df MS
F Prob > F

Between groups 18.828255 2 9.4141275 15.28 0.0000
Within groups 76.3843434 124 .61600277

Total 95.2125984 126 .755655543

Bartlett's test for equal variances: chi2(2) = 2.6669 Prob>chi2 = 0.264

. oneway rating group

_

ANOVA vs Linear Regression

- Note that the ANOVA table and the regression output are identical.
- ANOVA is simply a linear regression with categorical predictors.
- What we called "within groups MS" is the MSE (mean square error, or mean square residual) in the regression model.
- What we called "between groups MS" in the mean square model in the regression model.

8