Mathematics 231

Lecture 28 Liam O'Brien

Announcements

Topics

 Hypothesis testing for comparing two proportions
 Introduction to ANOVA

Comparison of Two Population Proportions

- Before, we considered the comparison of the population proportion to some null value, p₀.
- However, in studies we want to compare the proportions of "successes" in two populations p₁ and p₂.
- Example: Proportion of successes in a treatment vs. control group, among males vs. females.
- Ordinarily, we want to know if p₁ and p₂ are identical (suspecting they are not).

Comparison of Two Population Proportions

- Given SRS's from the two populations or groups, p₁ and p₂ can be estimated by their respective sample proportions.
- Question: Is the difference in sample proportions so large that it is unlikely to be due to chance alone.
- To answer this question, we consider the difference between the two sample proportions:

$$\hat{p}_1 - \hat{p}_2$$

Comparison of Two Population

Proportions When both sample sizes, n_1 and n_2 , are sufficiently large the sampling distribution of $\hat{p}_1 - \hat{p}_2$ is approximately normal. $n_1 \hat{p}(1-\hat{p}) \ge 1$ and $n_2 \hat{p}(1-\hat{p}) \ge 10$

A test of $H_0: p_1 = p_2$ against $H_A: p_1 \neq p_2$ can be based on the following statistic,

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where $\hat{p} = \frac{x_1 + x_2}{p}$ is the pooled estimate of *p*. $n_{1} + n_{2}$

CI for Two Population Proportions

When both sample sizes, n_1 and n_2 , are sufficiently large the sampling distribution of $\hat{p}_1 - \hat{p}_2$ is approximately normal. A confidence interval for the population proportion difference is given by:

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Example: Binge Drinking

- A survey of 17,096 college students at 4-year colleges in the U.S. was conducted in 2000. each student was asked whether or not they participated in frequent binge drinking.
- Are men and women college students equally likely to participate in the behavior?
- Men: n = 7,180; p-hat = 0.227
- Women: n = 9,916; p-hat = 0.170
- Calculate a 95% CI for the difference in means.

Example: Binge Drinking $n_M \hat{p}_M = 1630 > 10; \quad n_M (1 - \hat{p}_M) = 5550 > 10$ $n_W \hat{p}_W = 1684 > 10; \quad n_W (1 - \hat{p}_W) = 8232 > 10$ A 95% CI is thus given by,

$$\hat{p}_{M} - \hat{p}_{W} \pm z^{*} \sqrt{\frac{\hat{p}_{M}(1 - \hat{p}_{M})}{n_{M}}} + \frac{\hat{p}_{W}(1 - \hat{p}_{W})}{n_{W}}$$

 $0.227 - 0.170 \pm 1.96(0.00622) = (0.0448, 0.0692)$ What does this tell us about the difference between the proportions of men and women college students who frequently binge drink?

Example: Hypertension

- A major study of the effect of hypertension on risk of heart attack was performed.
- Data were collected from 3338 men with high blood pressure and 2676 men with low blood pressure.

These men were followed over a period of time and 21 in the LBP group died of heart disease and 55 in the HBP group died of heart disease.
Find a 95% CI for the difference between these two proportions.

Example: Hypertension

Check validity assumptions:

They all hold.

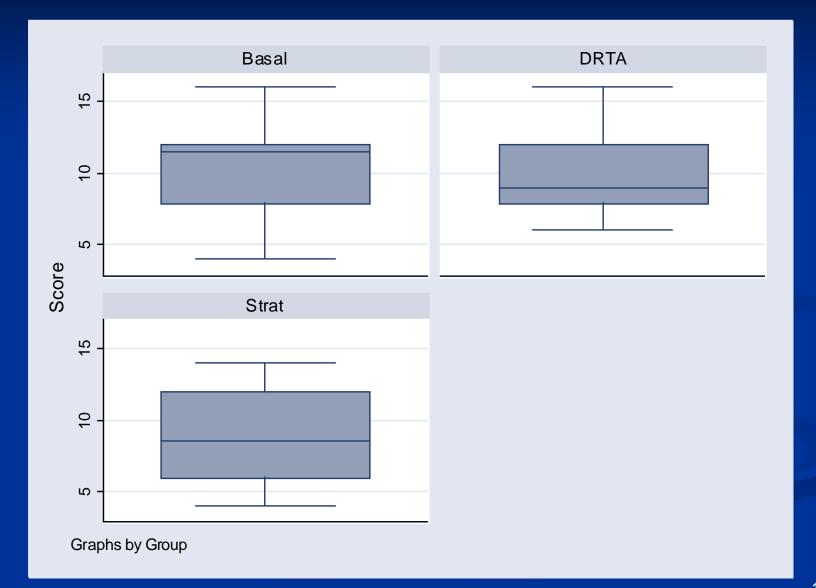
The 95% CI is given by,

$$\hat{p}_{HBP} - \hat{p}_{LBP} \pm z^* \sqrt{\frac{\hat{p}_{HBP}(1 - \hat{p}_{HBP})}{n_{HBP}} + \frac{\hat{p}_{LBP}(1 - \hat{p}_{LBP})}{n_{LBP}}}$$

 $0.0165 - 0.0078 \pm 1.96(0.00278) = (0.00324, 0.0142)$ What can we say about the relative risk of death from heart disease comparing the HBP and LBP groups?

Analysis of Variance (ANOVA)

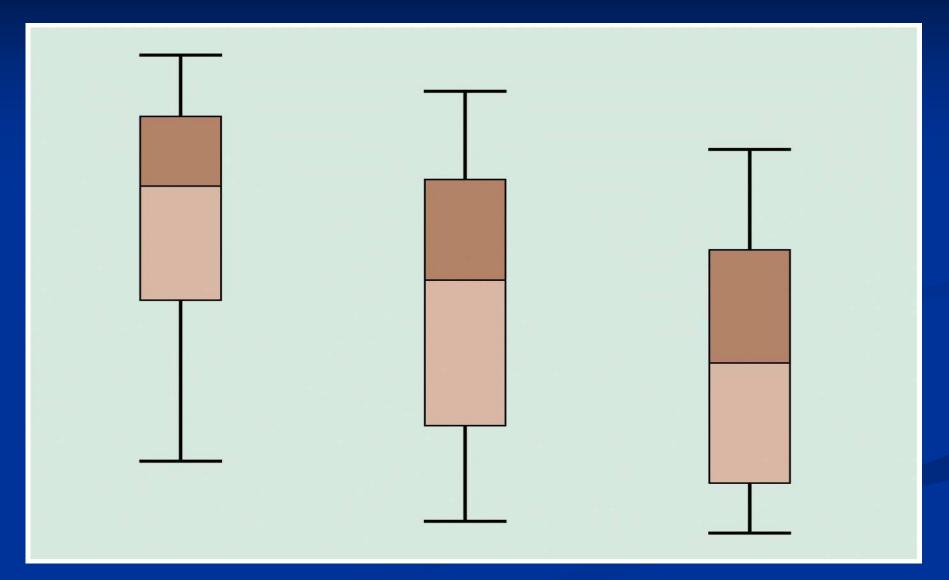
- Comparison of the means of *K* independent groups.
- Populations are assumed to be normal with equal variances, $\sigma_1 = \sigma_2 = \dots \sigma_K = \sigma_K$.
- We obtain SRSs of size n_i from the population with mean μ_i and standard deviation σ_i , i=1,2,...K.
- We want to test the null hypothesis $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ against the alternative that at least one of these means differs from the others.



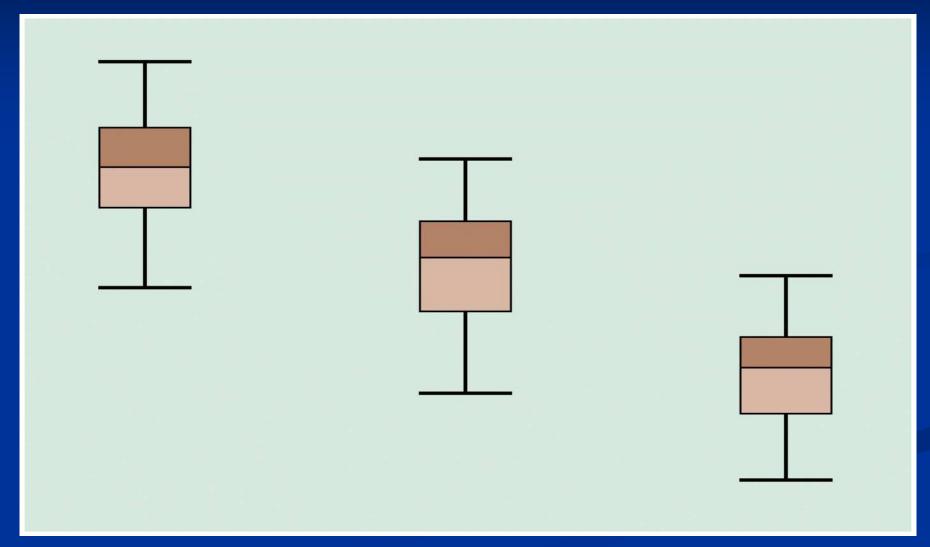
Analysis of Variance (ANOVA)

- With *K* populations there are two types of variability:
- 1. Variation of individual values around their group means (variation within groups).
- 2. Variation of group means around the overall mean (variation between groups).
- Main idea: If (i) is small relative to (ii), this implies the group (or population) means are different.
- ANOVA determines whether variability in data is mainly from variation within groups, or variation between groups.

Variation Within Versus Between Groups



Variation Within Versus Between Groups



Variance Within Groups

- From the assumption of homoscedasticity, we have that s₁, s₂,...,s_K all estimate σ, the common value of the sd in each of the K groups (or populations).
- As a result, we can combine them to obtain a better estimate of σ.
- The combined, or pooled, estimate of σ² is called the variance within groups.

Variance Within Groups

Pooled estimate of σ^2 , the variance within groups, $s_P^2 = MSE = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_K - 1)s_K^2}{(n_1 - 1) + (n_2 - 1) + \dots + (n_K - 1)}$

This is an extension of the pooled estimate of σ^2 used for the two-sample t-test.

The MSE refers to the within groups estimate variance MSE is also known as the "mean square (MS) error."

Variance Between Groups

If the null hypothesis $H_0: \mu_1 = \mu_2 = \cdots = \mu_K$ is in fact true, then it is as if we are sampling K times from the same population, with mean μ and SD σ . From sampling distribution of sample mean, we can regard \overline{x}_1 as an observation from a population with mean μ and SD $\sigma/\sqrt{n_1}$ \overline{x}_{2} as an observation from a population with mean μ and SD $\sigma/\sqrt{n_2}$ and so on.

Variance Between Groups

So we can get a better estimate of μ using

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_K \overline{x}_K}{n_1 + n_2 + \dots + n_K} = \frac{\sum_{all i} x_i}{n_i}$$

where $n = n_1 + n_2 + \dots + n_K$

Variance Between Groups Another estimate of σ^2 is the between groups estimate $s_b^2 = MSTr = \frac{n_1(\overline{x_1} - \overline{x})^2 + n_2(\overline{x_2} - \overline{x})^2 + \dots + n_K(\overline{x_K} - \overline{x})^2}{K - 1}$ This is an estimate of the variation of the group means around the overall mean; s_h^2 is also known as the "mean square (MS) between groups" or "mean square for treatments." Note: The between groups estimate of σ^2 is valid only if $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ is true.

Variance Between Groups

If $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ is true, s_{μ} and s_{μ} both estimate σ and should be of similar magnitude. Therefore a test of $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ can be based on a comparison of the within groups and between groups estimates of the variability. If $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ is not true, the between groups estimate of σ^2 will, in general, be larger than the within groups estimate of σ^2 .

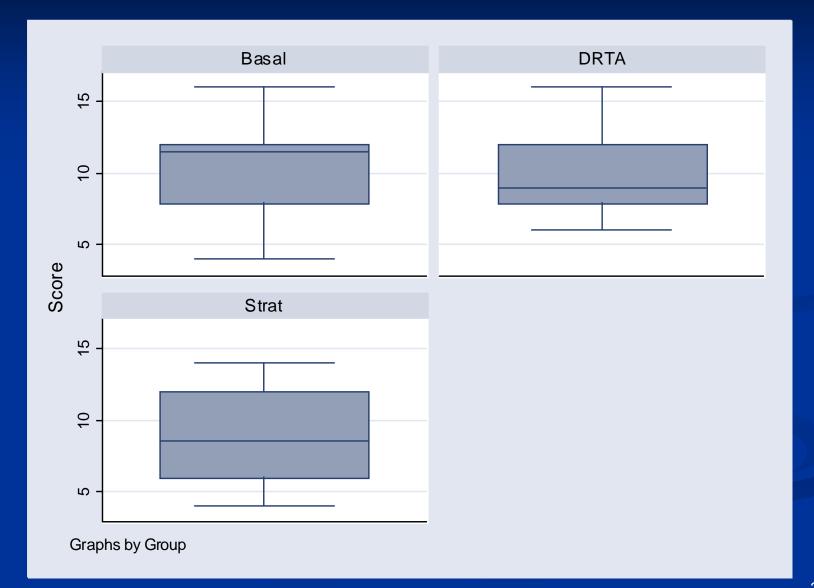
The F Statistic

Question: Do sample means vary around the overall mean more than the individual observations vary around the sample means? To evaluate $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ we use the test statistic,

 $F = \frac{MSTr}{MSE} = \frac{\text{between groups MS}}{\text{within groups MS}}.$ The null hypothesis will be rejected if F is large.

The F Statistic

Under $H_0: \mu_1 = \mu_2 = \dots = \mu_K$, the F statistic has an F distribution with K-1 and n-K degrees of freedom (where $n = n_1 + n_2 + \dots + n_K$) Note: df corresond to numerator and denominator of F. F distribution cannot assume negative values and is skewed to the right. Its shape depends on the degrees of freedom.



	Summary of Score				
Group	Mean	Std. Dev.	Freq.		
Basal DRTA	10.5 9.7272727	2.9720924 2.6935871	22 22		
Strat	9.1363636	3.3423039	22		
Total	9.7878788	3.0205203	66		

. oneway score group

Analysis of Variance					
Source	SS	df	MS	F	Prob > F
Between groups	20.5757576	2	10.2878788	1.13	0.3288
Within groups	572.454545	63	9.08658009		
Total	593.030303	65	9.12354312		

Bartlett's test for equal variances: chi2(2) = 0.9623 Prob>chi2 =
 0.618

Multiple Comparisons: Bonferroni

 Suppose we wish to perform all possible pairs of comparisons among K groups.

There are
$$\binom{K}{2} = \frac{K!}{2!(K-2)!} = \frac{K(K-1)}{2}$$
 such comparison.

To protect against the overall level of α , we must perform each individual test at level,

$$\alpha^* = \frac{\alpha}{\binom{K}{2}}$$

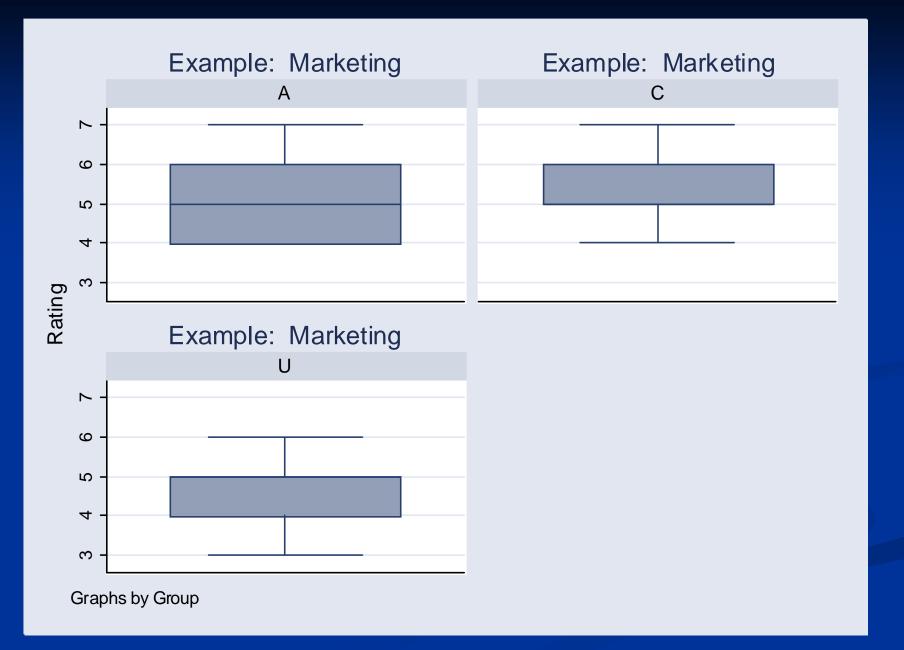
Multiple Comparisons: Bonferroni

Suppose we wish to perform all possible pairs of comparisons among K groups. If K=3 (e.g., groups 1, 2, and 3) then there are

 $\binom{K}{2} = \frac{3!}{2!(3-2)!} = 3 \text{ possible pairwise comparisons.}$ Group 1 versus group 2 Group 1 versus group 3 Group 2 versis group 3 If you want an overall 0.05 level, then do each of the three tests at the 0.05/3 = 0.0167 level.

ANOVA/Bonferroni in Stata

- To do a one-way ANOVA (1 group variable) in Stata, click on Statistics > Linear Models and related > ANOVA/ MANOVA > one way analysis of variance.
- Enter the "response" variable and the "group" variable.
- Then click the "Bonferroni" box under the Multiple Comparisons heading.
- Note: There are many multiple comparisons procedures, but Bonferroni is the most conservative.



Example: Marketing

. oneway rating group, bonferroni tabulate

	Summary of Rating				
Group	Mean	Std. Dev.	Freq.		
A	5.0555556	.8261596	36		
C	5.4166667	.87423436	36		
U	4.5090909	.69048365	55		
	;				
Total	4.9212598	.8692845	127		

Analysis of Variance

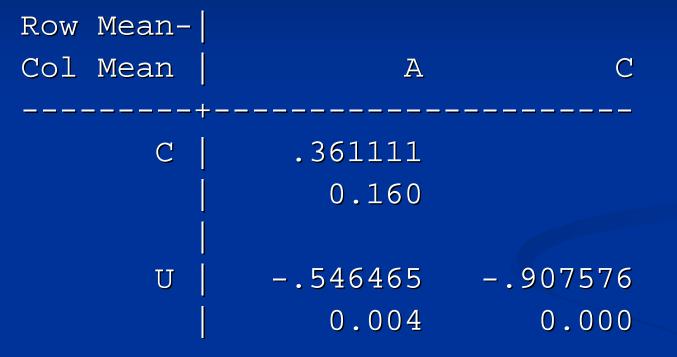
Source		df 	MS	F 	Prob > F
Between groups Within groups	18.828255 76.3843434	2 124	9.4141275 .61600277	15.28	0.0000
Total	95.2125984	126	.755655543		

Bartlett's test for equal variances: chi2(2) = 2.6669 Prob>chi2 = 0.264

Example: Marketing

Comparison of Rating by Group

(Bonferroni)



Bonferroni in Stata

- Stata does all possible pairwise comparisons and reports p-values that are **already** corrected for the fact you have done [K*(K-1)]/2 comparisons.
- That is, it constructs a series of two-sample t-tests using S_w as an estimate of σ, and multiplies the usual p-values by [K*(K-1)]/2.
 So you compare the corrected p-values to 0.05.