Mathematics 231

Lecture 28 Liam O'Brien

Announcements

Reading

 Today 	M&M 8.2	505-515
	M&M 12.0	637
 Next class 	M&M 12.1	638-655

Topics

- Hypothesis testing for comparing two proportions
- Introduction to ANOVA

Comparison of Two Population Proportions

- Before, we considered the comparison of the population proportion to some null value, p₀.
- However, in studies we want to compare the proportions of "successes" in two populations p₁ and p₂.
- Example: Proportion of successes in a treatment vs. control group, among males vs. females.
- Ordinarily, we want to know if p₁ and p₂ are identical (suspecting they are not).

Comparison of Two Population Proportions

- Given SRS's from the two populations or groups, p₁ and p₂ can be estimated by their respective sample proportions.
- Question: Is the difference in sample proportions so large that it is unlikely to be due to chance alone.
- To answer this question, we consider the difference between the two sample proportions:

 $\hat{p}_1 - \hat{p}_2$

Comparison of Two Population Proportions

When both sample sizes, n_1 and n_2 , are sufficiently large the sampling distribution of $\hat{p}_1 - \hat{p}_2$ is approximately normal.

 $n_1 \hat{p}(1-\hat{p}) \ge 10$ and $n_2 \hat{p}(1-\hat{p}) \ge 10$

A test of $H_0: p_1 = p_2$ against $H_A: p_1 \neq p_2$ can be based on the following statistic,

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$ is the pooled estimate of *p*.

CI for Two Population Proportions

When both sample sizes, n_1 and n_2 , are sufficiently large the sampling distribution of $\hat{p}_1 - \hat{p}_2$ is approximately normal.

A confidence interval for the population proportion difference is given by:

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Example: Binge Drinking

- A survey of 17,096 college students at 4-year colleges in the U.S. was conducted in 2000. each student was asked whether or not they participated in frequent binge drinking.
- Are men and women college students equally likely to participate in the behavior?
- Men: n = 7,180; p-hat = 0.227
- Women: n = 9,916; p-hat = 0.170
- Calculate a 95% CI for the difference in means.

Example: Binge Drinking

 $n_M \hat{p}_M = 1630 > 10;$ $n_M (1 - \hat{p}_M) = 5550 > 10$ $n_W \hat{p}_W = 1684 > 10;$ $n_W (1 - \hat{p}_W) = 8232 > 10$ A 95% CI is thus given by,

$$\hat{p}_{M} - \hat{p}_{W} \pm z^{*} \sqrt{\frac{\hat{p}_{M} (1 - \hat{p}_{M})}{n_{M}} + \frac{\hat{p}_{W} (1 - \hat{p}_{W})}{n_{W}}}$$

 $0.227 - 0.170 \pm 1.96(0.00622) = (0.0448, 0.0692)$ What does this tell us about the difference between the proportions of men and women college students who frequently binge drink?

Example: Hypertension

- A major study of the effect of hypertension on risk of heart attack was performed.
- Data were collected from 3338 men with high blood pressure and 2676 men with low blood pressure.
- These men were followed over a period of time and 21 in the LBP group died of heart disease and 55 in the HBP group died of heart disease.
- Find a 95% CI for the difference between these two proportions.

10

12

Example: Hypertension

Check validity assumptions: They all hold.

They all hold.

The 95% CI is given by,

$$\hat{p}_{HBP} - \hat{p}_{LBP} \pm z^* \sqrt{\frac{\hat{p}_{HBP}(1-\hat{p}_{HBP})}{n_{HBP}}} + \frac{\hat{p}_{LBP}(1-\hat{p}_{LBP})}{n_{LBP}}}$$

 $0.0165 - 0.0078 \pm 1.96(0.00278) = (0.00324, 0.0142)$ What can we say about the relative risk of death from heart disease comparing the HBP and LBP groups?

11

Analysis of Variance (ANOVA)

- Comparison of the means of *K* independent groups.
- Populations are assumed to be normal with equal variances, $\sigma_1 = \sigma_2 = \dots \sigma_K = \sigma$.
- We obtain SRSs of size n_i from the population with mean μ_i and standard deviation σ_i, i=1,2,...K.
- We want to test the null hypothesis H₀: μ₁= μ₂=... μ_K against the alternative that at least one of these means differs from the others.

Analysis of Variance (ANOVA)

- With *K* populations there are two types of variability:
- 1. Variation of individual values around their group means (variation within groups).
- 2. Variation of group means around the overall mean (variation between groups).
- Main idea: If (i) is small relative to (ii), this implies the group (or population) means are different.
- ANOVA determines whether variability in data is mainly from variation within groups, or variation between groups.

Variance Within Groups

- From the assumption of homoscedasticity, we have that s₁, s₂,...,s_K all estimate σ, the common value of the sd in each of the *K* groups (or populations).
- As a result, we can combine them to obtain a better estimate of σ.
- The combined, or pooled, estimate of σ² is called the variance within groups.

17

19

Variance Within Groups

Pooled estimate of σ^2 , the variance within groups,

 $s_p^2 = MSE = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_K - 1)s_K^2}{(n_1 - 1) + (n_2 - 1) + \dots + (n_K - 1)}$

This is an extension of the pooled estimate of σ^2 used for the two-sample t-test.

The MSE refers to the within groups estimate variance MSE is also known as the "mean square (MS) error."

18

20

Variance Between Groups

If the null hypothesis $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ is in fact true, then it is as if we are sampling K times from the same population, with mean μ and SD σ . From sampling distribution of sample mean, we can regard \overline{x}_1 as an observation from a population with mean μ and SD $\sigma/\sqrt{n_1}$ \overline{x}_2 as an observation from a population with mean

 x_2 as an observation from a population with mean μ and SD $\sigma/\sqrt{n_2}$ and so on.

Variance Between Groups

So we can get a better estimate of μ using

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_K \overline{x}_K}{n_1 + n_2 + \dots + n_K} = \frac{\sum_{all i} x_i}{n_i}$$

where
$$n = n_1 + n_2 + \dots + n_k$$

Variance Between Groups

Another estimate of σ^2 is the between groups estimate $s_b^2 = MSTr = \frac{n_1(\overline{x}_1 - \overline{x})^2 + n_2(\overline{x}_2 - \overline{x})^2 + \dots + n_K(\overline{x}_K - \overline{x})^2}{K-1}$ This is an estimate of the variation of the group means around the overall mean; s_b^2 is also known as the "mean square (MS) between groups" or "mean square for

treatments." Note: The between groups estimate of σ^2 is valid

only if $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ is true.

21

23

Variance Between Groups

If $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ is true, s_w and s_b both estimate σ and should be of similar magnitude. Therefore a test of $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ can be based on a comparison of the within groups and between groups estimates of the variability. If $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ is not true, the between groups estimate of σ^2 will, in general, be larger than the within groups estimate of σ^2 .

The F Statistic

Question: Do sample means vary around the overall mean more than the individual observations vary around the sample means?

To evaluate $H_0: \mu_1 = \mu_2 = \dots = \mu_K$ we use the test statistic,

 $F = \frac{MSTr}{MSE} = \frac{\text{between groups MS}}{\text{within groups MS}}.$ The null hypothesis will be rejected if F is large.

The F Statistic

Under $H_0: \mu_1 = \mu_2 = \dots = \mu_K$, the F statistic has an F distribution with K-1 and n-K degrees of freedom (where $n = n_1 + n_2 + \dots + n_K$) Note: df corresond to numerator and denominator of F. F distribution cannot assume negative values and is skewed to the right. Its shape depends on the degrees of freedom.

24

Example: Reading Scores					
	Summary of Score				
Group	Mean	Std. Dev.	Freq.		
Basal	10.5	2.9720924	22		
DRTA	9.7272727	2.6935871	22		
Strat	9.1363636	3.3423039	22		
Total	9.7878788	3.0205203	66		
			26		

Example: Reading Scores					
. oneway score grou	ıp				
Source	Analysis SS	of Va df	riance MS	F	Prob > F
Between groups Within groups	20.5757576 572.454545	2 63	10.2878788 9.08658009	1.13	0.3288
Total	593.030303	65	9.12354312		
Bartlett's test for 0.618	r equal varian	ces:	chi2(2) = 0.9	623 Prob	>>chi2 =
					27

I

Multiple Comparisons: Bonferroni

• Suppose we wish to perform all possible pairs of comparisons among K groups.

There are
$$\binom{K}{2} = \frac{K!}{2!(K-2)!} = \frac{K(K-1)}{2}$$
 such comparison.
To protect against the overall level of α , we must perform each individual test at level,
 $\alpha^* = \frac{\alpha}{(K)}$.

$$\ell' = \frac{K}{\binom{K}{2}}.$$

 Suppose we wish to perform all possible pairs of comparisons among K groups.

 $\binom{K}{2} = \frac{3!}{2!(3-2)!} = 3$ possible pairwise comparisons. Group 1 versus group 2 Group 1 versus group 3

Group 2 versis group 3 If you want an overall 0.05 level, then do each of the three tests at the 0.05/3 = 0.0167 level.

29

ANOVA/Bonferroni in Stata

- To do a one-way ANOVA (1 group variable) in Stata, click on Statistics > Linear Models and related > ANOVA/ MANOVA > one way analysis of variance.
- Enter the "response" variable and the "group" variable.
- Then click the "Bonferroni" box under the Multiple Comparisons heading.
- Note: There are many multiple comparisons procedures, but Bonferroni is the most conservative.

Example: Marketing

Comparison of Rating by Group					
		(B	onferroni)		
Row Mean-					
Col Mean	A	C			
+					
C	.361111				
	0.160				
U	546465	907576			
	0.004	0.000			
			33		

Bonferroni in Stata

- Stata does all possible pairwise comparisons and reports p-values that are **already** corrected for the fact you have done [K*(K-1)]/2 comparisons.
- That is, it constructs a series of two-sample ttests using S_w as an estimate of σ, and multiplies the usual p-values by [K*(K-1)]/2.
- So you compare the corrected p-values to 0.05.