

Topics

- Hypothesis testing for comparing two proportions
- Introduction to ANOVA

Comparison of Two Population Proportions

- Before, we considered the comparison of the population proportion to some null value, p_{0}.
- However, in studies we want to compare the proportions of "successes" in two populations p_{1} and p_{2}.
- Example: Proportion of successes in a treatment vs. control group, among males vs. females.
- Ordinarily, we want to know if p_{1} and p_{2} are identical (suspecting they are not).

Comparison of Two Population Proportions

- Given SRS's from the two populations or groups, p_{1} and p_{2} can be estimated by their respective sample proportions.
- Question: Is the difference in sample proportions so large that it is unlikely to be due to chance alone.
- To answer this question, we consider the difference between the two sample proportions:

$$
\hat{p}_{1}-\hat{p}_{2}
$$

CI for Two Population Proportions

When both sample sizes, n_{1} and n_{2}, are suffciently large the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal.
A confidence interval for the population proportion difference is given by:
$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z^{*} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

Comparison of Two Population Proportions

When both sample sizes, n_{1} and n_{2}, are suffciently
large the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal.
$n_{1} \hat{p}(1-\hat{p}) \geq 10$ and $n_{2} \hat{p}(1-\hat{p}) \geq 10$
A test of $\mathrm{H}_{0}: p_{1}=p_{2}$ against $\mathrm{H}_{\mathrm{A}}: p_{1} \neq p_{2}$ can be
based on the following statistic,
$z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$,
where $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$ is the pooled estimate of p.

Example: Binge Drinking

- A survey of 17,096 college students at 4 -year colleges in the U.S. was conducted in 2000. each student was asked whether or not they participated in frequent binge drinking.
- Are men and women college students equally likely to participate in the behavior?
- Men: $\mathrm{n}=7,180$; p-hat $=0.227$
- Women: $\mathrm{n}=9,916 ; \mathrm{p}$-hat $=0.170$
- Calculate a 95% CI for the difference in means.

Example: Binge Drinking

$n_{M} \hat{p}_{M}=1630>10 ; \quad n_{M}\left(1-\hat{p}_{M}\right)=5550>10$
$n_{W} \hat{p}_{W}=1684>10 ; \quad n_{W}\left(1-\hat{p}_{W}\right)=8232>10$
A $95 \% \mathrm{CI}$ is thus given by,
$\hat{p}_{M}-\hat{p}_{W} \pm z^{*} \sqrt{\frac{\hat{p}_{M}\left(1-\hat{p}_{M}\right)}{n_{M}}+\frac{\hat{p}_{W}\left(1-\hat{p}_{W}\right)}{n_{W}}}$
$0.227-0.170 \pm 1.96(0.00622)=(0.0448,0.0692)$
What does this tell us about the difference between the proportions of men and women college students who frequently binge drink?

Example: Hypertension

- A major study of the effect of hypertension on risk of heart attack was performed.
- Data were collected from 3338 men with high blood pressure and 2676 men with low blood pressure.
- These men were followed over a period of time and 21 in the LBP group died of heart disease and 55 in the HBP group died of heart disease.
- Find a 95% CI for the difference between these two proportions.

Example: Hypertension

Check validity assumptions:
They all hold.
The 95% CI is given by,
$\hat{\mathrm{p}}_{\text {HBP }}-\hat{p}_{L B P} \pm z^{*} \sqrt{\frac{\hat{p}_{H B P}\left(1-\hat{p}_{H B P}\right)}{n_{H B P}}+\frac{\hat{p}_{L B P}\left(1-\hat{p}_{L B P}\right)}{n_{L B P}}}$
$0.0165-0.0078 \pm 1.96(0.00278)=(0.00324,0.0142)$
What can we say about the relative risk of death from heart disease comparing the HBP and LBP groups?

Analysis of Variance (ANOVA)

- Comparison of the means of K independent groups.
- Populations are assumed to be normal with equal variances, $\sigma_{1}=\sigma_{2}=\ldots \sigma_{K}=\sigma$.
- We obtain SRSs of size n_{i} from the population with mean μ_{i} and standard deviation σ_{i}, $i=1,2, \ldots \mathrm{~K}$.
- We want to test the null hypothesis $\mathrm{H}_{0}: \mu_{1}=$ $\mu_{2}=\ldots \mu_{\mathrm{K}}$ against the alternative that at least one of these means differs from the others.

Example: Reading Scores

Analysis of Variance (ANOVA)

- With K populations there are two types of variability:

1. Variation of individual values around their group means (variation within groups).
2. Variation of group means around the overall mean (variation between groups).

- Main idea: If (i) is small relative to (ii), this implies the group (or population) means are different.
- ANOVA determines whether variability in data is mainly from variation within groups, or variation between groups.

Variance Within Groups

- From the assumption of homoscedasticity, we have that $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{K}}$ all estimate σ, the common value of the sd in each of the K groups (or populations).
- As a result, we can combine them to obtain a better estimate of σ.
- The combined, or pooled, estimate of σ^{2} is called the variance within groups.

Variance Within Groups

Pooled estimate of σ^{2}, the variance within groups,
$s_{P}^{2}=M S E=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{K}-1\right) s_{K}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots\left(n_{K}-1\right)}$
This is an extension of the pooled estimate of σ^{2} used for the two-sample t-test.
The MSE refers to the within groups estimate variance MSE is also known as the "mean square (MS) error."

Variance Between Groups

If the null hypothesis $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ is in fact true, then it is as if we are sampling K times from the same population, with mean μ and $\mathrm{SD} \sigma$.
From sampling distribution of sample mean, we can regard $\overline{\mathrm{x}}_{1}$ as an observation from a population with mean μ and SD $\sigma / \sqrt{\mathrm{n}_{1}}$
\bar{x}_{2} as an observation from a population with mean μ and SD $\sigma / \sqrt{\mathrm{n}_{2}}$ and so on.

Variance Between Groups

So we can get a better estimate of μ using
$\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}+\cdots+n_{K} \bar{x}_{K}}{n_{1}+n_{2}+\cdots+n_{K}}=\frac{\sum_{\text {alli }} x_{i}}{n}$
where $n=n_{1}+n_{2}+\cdots+n_{K}$

Variance Between Groups

Another estimate of σ^{2} is the between groups estimate
$s_{b}^{2}=\operatorname{MSTr}=\frac{n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{K}\left(\bar{x}_{K}-\bar{x}\right)^{2}}{K-1}$
This is an estimate of the variation of the group means around the overall mean; s_{b}^{2} is also known as the "mean square (MS) between groups" or "mean square for treatments."
Note: The between groups estimate of σ^{2} is valid only if $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ is true.

Variance Between Groups

If $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ is true, s_{w} and s_{b} both estimate σ and should be of similar magnitude. Therefore a test of $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ can be based on a comparison of the within groups and between groups estimates of the variability.
If $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ is not true, the between groups estimate of σ^{2} will, in general, be larger than the within groups estimate of σ^{2}.

The F Statistic

Question: Do sample means vary around the overall mean more than the individual observations vary around the sample means?
To evaluate $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$ we use the test statistic,
$F=\frac{M S T r}{M S E}=\frac{\text { between groups MS }}{\text { within groups MS }}$.
The null hypothesis will be rejected if F is large.

The F Statistic

Under $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K}$, the F statistic has an F distribution with $\mathrm{K}-1$ and $n-\mathrm{K}$ degrees of freedom (where $n=n_{1}+n_{2}+\cdots+n_{K}$)
Note: df corresond to numerator and denominator of F . F distribution cannot assume negative values and is skewed to the right.
Its shape depends on the degrees of freedom.

Example: Reading Scores			
Group	Summary of Score		
Basal	10.5	2.9720924	22
DRTA	9.7272727	2.6935871	22
Strat	9.1363636	3.3423039	22
Total	9.7878788	3.0205203	66
			26

Multiple Comparisons: Bonferroni

- Suppose we wish to perform all possible pairs of comparisons among K groups.
There are $\binom{\mathrm{K}}{2}=\frac{K!}{2!(K-2)!}=\frac{K(K-1)}{2}$ such comparison.
To protect against the overall level of α, we must perform each individual test at level,
$\alpha^{*}=\frac{\alpha}{\binom{K}{2}}$.

Multiple Comparisons: Bonferroni

- Suppose we wish to perform all possible pairs of comparisons among K groups.
$\binom{K}{2}=\frac{3!}{2!(3-2)!}=3$ possible pairwise comparisons.
Group 1 versus group 2
Group 1 versus group 3
Group 2 versis group 3
If you want an overall 0.05 level, then do each of the three tests at the $0.05 / 3=0.0167$ level.

ANOVA/Bonferroni in Stata

- To do a one-way ANOVA (1 group variable) in Stata, click on Statistics > Linear Models and related > ANOVA/ MANOVA > one way analysis of variance.
- Enter the "response" variable and the "group" variable.
- Then click the "Bonferroni" box under the Multiple Comparisons heading.
- Note: There are many multiple comparisons procedures, but Bonferroni is the most conservative.

Bonferroni in Stata

- Stata does all possible pairwise comparisons and reports p -values that are already corrected for the fact you have done $\left[\mathrm{K}^{*}(\mathrm{~K}-1)\right] / 2$ comparisons.
- That is, it constructs a series of two-sample ttests using S_{w} as an estimate of σ, and multiplies the usual p-values by $\left[\mathrm{K}^{*}(\mathrm{~K}-1)\right] / 2$.
- So you compare the corrected p-values to 0.05 .

