

Topics

- Hypothesis testing for comparing two variances
- Hypothesis testing for matched pairs

Testing Variance Equality

- When we have a 2 -sample t-test with independent samples we need to decide if we have equal variances.
- What we can do?
- Rule-of-thumb: If the difference is less than 10% between s_{1} and s_{2}, then assume equality.
- Formal way: Hypothesis test

Test of Equality of Variances

$H_{0}: \sigma_{1}=\sigma_{2} \quad H_{A}: \sigma_{1} \neq \sigma_{2}$
We have an estimate of each of these from our two samples and will construct a test statistic from these.
$F=\frac{s_{1}^{2}}{s_{2}^{2}}$ where $s_{1}>s_{2}$
Under H_{0} this has an F -distribution with $\mathrm{n}_{1}-1$ numerator, and $n_{2}-1$ denominator degrees of freedom.

The F Statistic

The F statistic has two different degrees of freedom terms: $\mathrm{n}_{1}-1$ in the numerator, and $\mathrm{n}_{2}-1$ in the denomiator.
Note: df corresond to numerator and denominator of F .
F distribution cannot assume negative values and is skewed to the right.
Its shape depends on the degrees of freedom.

Test of Equality of Variances

$H_{0}: \sigma_{1}=\sigma_{2} \quad H_{A}: \sigma_{1} \neq \sigma_{2}$
Reject H_{0} if $2 P(F>f)<\alpha$. Generally we set $\alpha=0.10$. Note that the F-table only has particular values for df tabulated like the t-distribution.
Can only get a range for the p-value from Table E . Stata gives exact probability.

Finding F Probabilities in Stata

- If you have numdf numerator df, and dendf denominator df, type:
display Ftail(numdf, dendf, f)
to get upper tail probability (multiply by 2 for variance test p -value).

Test of Equality of Variances:

Example
$H_{0}: \sigma_{1}=\sigma_{2} \quad H_{A}: \sigma_{1} \neq \sigma_{2}$
From healthy/failed firms example:
$s_{1}=0.639 ; \quad s_{2}=0.481$
$F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{0.639^{2}}{0.481^{2}}=1.76$
. display Ftail(67,32,1.76)
. 04044562
p-value $=2(0.04)=0.08<0.10$
Reject H_{0}, and variances are significantly different at the 10% level.

Paired Samples

- Defining characteristic of paired data is that for each observation in the first group, there is a corresponding observation in the second.
- Example 1: Study of a single population with observations both before and after an intervention.
- Example 2: Study of two populations of subjects who are matched on important characteristics.
- Pairing (a form of blocking) helps control known sources of variation.

Paired Samples

Given an SRS of size n , we want to test $\mathrm{H}_{0}: \delta=0$
against $\mathrm{H}_{\mathrm{A}}: \delta \neq 0$ (two-sided).
Use test statistic: $t=\frac{\bar{d}-\delta}{s_{d} / \sqrt{n}}=\frac{\bar{d}}{s_{d} / \sqrt{n}}$
When $\mathrm{H}_{0}: \delta=0$ is true, this statistic has a t-distribution with $\mathrm{n}-1$ degrees of freedom.
This is called the paired t-test.

Example: MLA Listening Scores for French Teachers

- 20 French teachers attend summer institute for 4 weeks to improve language skills.
- At beginning, they were given MLA listening test of understanding spoken French.
- After 4 weeks, MLA test given again.
- Has attendance at the summer institute improved French teachers' language skills?

TABLE 7.1 Modern Language Association listening scores for French teachers							
Teacher	Pretest	Posttest	Gain	Teacher	Pretest	Posttest	Gain
1	32	34	2	11	30	36	6
2	31	31	0	12	20	26	6
3	29	35	6	13	24	27	3
4	10	16	6	14	24	24	0
5	30	33	3	15	31	32	1
6	33	36	3	16	30	31	1
7	22	24	2	17	15	15	0
8	25	28	3	18	32	34	2
9	32	26	-6	19	23	26	3
10	20	26	6	20	23	26	3

Example: MLA Test

We have the following summary statistics for the differences:
$n=20$
$\bar{d}=2.5$
$s_{d}=0.647$
To do this in Stata, use the one-sample mean calculator option. Paired data result in a one-sample test.

Example: MLA Test

The test statistic is
$t=\frac{2.5}{0.647 / \sqrt{20}}=17.3 \sim t_{19}$
$p<0.001$
Reject H_{0} at the $\alpha=0.05$ level and conclude that scores significantly increased.

