Mathematics 231

Lecture 26 Liam O'Brien

Announcements

Reading

■ Today	$M \approx M 7.2$	447-467
		1111101

■ Next class M&M 7.1 428-435

M&M 7.3 474-477

Topics

Hypothesis testing for comparing two means

Comparison of Two Population Means

- So far, we have considered the comparison of the mean of a single population to some null value, μ_0 .
- However, many times we want to compare the means from two different populations, μ_1 and μ_2 .
- Example: Comparison of means for a treatment and control group; developed vs. developing countries, etc.
- Ordinarily, we want to know if μ_1 and μ_2 are equal.

Comparison of Two Population Means

- Given SRSs from the two populations, μ_1 and μ_2 can be estimated by their respective sample means.
- Question: Is the difference in sample means so large that it is unlikely to have occurred by chance alone?
- To answer this, the form of the test statistic depends on how the data were collected:
 - 1. Independent samples
 - 2. Paired samples

Independent Samples

- The two underlying populations of interest are independent.
- The population distributions are assumed to be normal.
- Given SRSs of size n_1 from population 1, and n_2 from population 2, we want to test:
 - H_0 : $\mu_1 = \mu_2$ against H_A : $\mu_1 \neq \mu_2$
- If the two population means are identical, we would expect the sample means to be relatively close to each other.

Independent Samples

We would want to reject $H_0: \mu_1 = \mu_2$ if \overline{x}_1 and \overline{x}_2 are too far apart, or eqivalently, if $\overline{x}_1 - \overline{x}_2$ is far from 0. Note: The standard deviations of the two populations σ_1 and σ_2 may or may not be equal.

Need to consider two cases:

- (1) Equal standard deviations: $\sigma_1 = \sigma_2 = \sigma$
- (2) Unequal standard deviations: $\sigma_1 \neq \overline{\sigma_2}$

Independent Samples: Equal Sds

To evaluate $H_0: \mu_1 = \mu_2$, use test statistic

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}.$$

Where
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

is a pooled, or combined, estimate of σ^2 .

Independent Samples: Equal Sds

The pooled estimate
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

combines information from both samples to produce a better estimate of σ^2 .

This is sensible since s_1^2 and s_2^2 estimate the same thing.

Independent Samples: Equal Sds

Under $H_0: \mu_1 = \mu_2$, the test statistic

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

has a t-distribution with $n_1 + n_2 - 2$ df.

This is called a two-sample t-test.

Among the healty firms:

$$n_1 = 68$$

$$\bar{x}_1 = 1.73$$

$$s_1 = 0.639$$

Among the failed firms:

$$n_2 = 33$$

$$\bar{x}_2 = 0.824$$

$$s_2 = 0.481$$

Two-Sample T-Test in Stata

- If you don't have a dataset click on Statistics > Summaries, Tables & Tests > Classical Tests of Hypotheses > Two-sample mean comparison calculator
- Enter the sample sizes, sample means, sample sd's, and select whether the variances are assumed to be equal or not.

Two-Sample T-Test in Stata

. ttesti 68 1.72 0.639 33 0.824 0.481

Two-sample t test with equal variances

	 Obs	Mean	Std. Err.	Std. Dev.	 [95% Conf	. Interval]
х У	 68 33	1.72 .824	.0774901 .0837314	.639 .481	1.565329 .6534448	1.874671 .9945552
combined	+ 101	1.427248	.0721645	.725244	1.284075	1.57042
diff	 	.896	.1257124		.6465593	1.145441

Degrees of freedom: 99

Ho: mean(x) - mean(y) = diff = 0

- Since p < 0.001, we can reject H_0 in favor of H_A .
- Note: We can construct a 95% CI for μ_1 μ_2 .

$$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (0.657, 1.15)$$

where t^* is a t-multipler with $n_1 + n_2 - 2$ df.

The test statistic is,

$$s_P^2 = \frac{(68-1)(0.639)^2 + (33-1)(0.481)^2}{68+33-2} = 0.352$$

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{1.72 - 0.824}{\sqrt{0.352 \left(\frac{1}{68} + \frac{1}{33}\right)}} = 7.12$$

Independent Samples: Unequal SDs

To evaluate $H_0: \mu_1 = \mu_2$ use the test statistic,

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{s_1^2 + s_2^2}{n_1 + n_2}\right)}}$$

There is no common estimate for the standard deviation.

Independent Samples: Unequal SDs

Under $H_0: \mu_1 = \mu_2$ the test statistic

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} \text{ has a t-distribution with}$$

$$k = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2} \text{ degrees of freedom.}$$

Independent Samples: Unequal SDs

A $(1-\alpha)$ % CI is given by,

$$(\overline{x}_1 - \overline{x}_2) \pm t_k^* \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$

with

$$k = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2} \text{ degrees of freedom.}$$

- Since p < 0.001, we can reject H_0 in favor of H_A .
- Note: We can construct a 95% CI for μ_1 μ_2 .

$$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)} = (0.670, 1.12)$$

where t^* is a t-multiplier with k df.

■ The test statistic is,

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}} = \frac{1.72 - 0.824}{\sqrt{\frac{0.639^2}{68} + \frac{0.481^2}{33}}} = 7.86$$

Two-Sample T-Test in Stata

. ttesti 68 1.72 0.639 33 0.824 0.481, unequal

Two-sample t test with unequal variances

	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
х У	68 33	1.72 .824	.0774901 .0837314	.639 .481	1.565329 .6534448	1.874671 .9945552
combined	101	1.427248	.0721645	.725244	1.284075	1.57042
diff		.896	.1140862		.6690326	1.122967

Satterthwaite's degrees of freedom: 81.6737

Ho: mean(x) - mean(y) = diff = 0