

Announcements

- Reading
- Today M\&M 7.2 447-467
- Next class M\&M 7.1 428-435

M\&M $7.3 \quad$ 474-477

Topics

- Hypothesis testing for comparing two means

Comparison of Two Population Means

- So far, we have considered the comparison of the mean of a single population to some null value, μ_{0}.
- However, many times we want to compare the means from two different populations, μ_{1} and μ_{2}.
- Example: Comparison of means for a treatment and control group; developed vs. developing countries, etc.
- Ordinarily, we want to know if μ_{1} and μ_{2} are equal.

Comparison of Two Population Means

- Given SRSs from the two populations, μ_{1} and μ_{2} can be estimated by their respective sample means.
- Question: Is the difference in sample means so large that it is unlikely to have occurred by chance alone?
- To answer this, the form of the test statistic depends on how the data were collected:

1. Independent samples
2. Paired samples

Independent Samples

- The two underlying populations of interest are independent.
- The population distributions are assumed to be normal.
- Given SRSs of size n_{1} from population 1, and n_{2} from population 2, we want to test:
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ against $\mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2}$
- If the two population means are identical, we would expect the sample means to be relatively close to each other.

Independent Samples

We would want to reject $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ if $\overline{\mathrm{x}}_{1}$ and $\overline{\mathrm{x}}_{2}$ are too far apart, or eqivalently, if $\bar{x}_{1}-\bar{x}_{2}$ is far from 0 .
Note: The standard deviations of the two populations σ_{1} and σ_{2} may or may not be equal.
Need to consider two cases:
(1) Equal standard deviations: $\sigma_{1}=\sigma_{2}=\sigma$
(2) Unequal standard deviations: $\sigma_{1} \neq \sigma_{2}$

Independent Samples: Equal Sds

To evaluate $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$, use test statistic $t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$.

Where $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$
is a pooled, or combined, estimate of σ^{2}.

Independent Samples: Equal Sds

The pooled estimate $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$
combines information from both samples to produce a better estimate of σ^{2}.

This is sensible since s_{1}^{2} and s_{2}^{2} estimate the same thing.

Independent Samples: Equal Sds

Under $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$, the test statistic
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
has a t-distribution with $n_{1}+n_{2}-2 \mathrm{df}$.

This is called a two-sample t-test.

Example: Assets and Liabilities

Example: Assets and Liabilities

Among the healty firms:
$n_{1}=68$
$\bar{x}_{1}=1.73$
$s_{1}=0.639$
Among the failed firms:
$n_{2}=33$
$\bar{x}_{2}=0.824$
$s_{2}=0.481$

Two-Sample T-Test in Stata

- If you don't have a dataset click on Statistics > Summaries, Tables \& Tests > Classical Tests of Hypotheses $>$ Two-sample mean comparison calculator
- Enter the sample sizes, sample means, sample sd's, and select whether the variances are assumed to be equal or not.

Two-Sample T-Test in Stata

. ttesti $681.720 .639 \quad 330.824 \quad 0.481$
Two-sample t test with equal variances

Example: Assets and Liabilities

- Since $\mathrm{p}<0.001$, we can reject H_{0} in favor of H_{A}.
- Note: We can construct a 95% CI for $\mu_{1}-\mu_{2}$.
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t^{*} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=(0.657,1.15)$
where t^{*} is a t-multipler with $n_{1}+n_{2}-2 \mathrm{df}$

Example: Assets and Liabilities

- The test statistic is,

$$
\begin{aligned}
& s_{P}^{2}=\frac{(68-1)(0.639)^{2}+(33-1)(0.481)^{2}}{68+33-2}=0.352 \\
& t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{s_{P}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{1.72-0.824}{\sqrt{0.352\left(\frac{1}{68}+\frac{1}{33}\right)}}=7.12
\end{aligned}
$$

Independent Samples: Unequal SDs

To evaluate $H_{0}: \mu_{1}=\mu_{2}$ use the test statistic,
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}}$
There is no common estimate for the standard deviation.

Independent Samples: Unequal SDs

Under $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ the test statistic
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}}$ has a t-distribution with
$k=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$ degrees of freedom.

Independent Samples: Unequal SDs

Example: Assets and Liabilities
$\mathrm{A}(1-\alpha) \% \mathrm{CI}$ is given by,
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{k}^{*} \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}$
with
$k=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$ degrees of freedom.

Example: Assets and Liabilities

- Since $\mathrm{p}<0.001$, we can reject H_{0} in favor of H_{A}.
- Note: We can construct a 95% CI for $\mu_{1}-\mu_{2}$.
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t^{*} \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}=(0.670,1.12)$
where t^{*} is a t -multiplier with k df .

Example: Assets and Liabilities

- The test statistic is,

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{1.72-0.824}{\sqrt{\frac{0.639^{2}}{68}+\frac{0.481^{2}}{33}}}=7.86
$$

Two-Sample T-Test in Stata

. ttesti $681.720 .639330 .824 \quad 0.481$, unequal
Two-sample t test with unequal variances

	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf.	Interval]
\times	68	1.72	. 0774901	. 639	1.565329	1.874671
y	33	. 824	. 0837314	. 481	. 6534448	. 9945552
combined	101	1.427248	. 0721645	. 725244	1.284075	1.57042
diff		. 896	. 1140862		. 6690326	1.122967

Satterthwaite's degrees of freedom: 81.6737
Ho: mean $(x)-\operatorname{mean}(y)=\operatorname{diff}=0$

```
    Ha: diff < 0 
        Ha: diff != 0
        P>|t| = 7.8537
                Ha: diff > 0 
    t = 7.8537
```

 -