Mathematics 231

Lecture 26 Liam O'Brien

Announcements

2

Reading

■ Today	M&M 7.2	447-467
 Next class 	M&M 7.1	428-435
	M&M 7.3	474-477

Topics

Hypothesis testing for comparing two means

Comparison of Two Population Means

- So far, we have considered the comparison of the mean of a single population to some null value, μ₀.
- However, many times we want to compare the means from two different populations, μ₁ and μ₂.
- Example: Comparison of means for a treatment and control group; developed vs. developing countries, etc.
- Ordinarily, we want to know if μ_1 and μ_2 are equal.

Comparison of Two Population Means

- Given SRSs from the two populations, μ₁ and μ₂ can be estimated by their respective sample means.
- Question: Is the difference in sample means so large that it is unlikely to have occurred by chance alone?
- To answer this, the form of the test statistic depends on how the data were collected:
 - 1. Independent samples
 - 2. Paired samples

Independent Samples

- The two underlying populations of interest are independent.
- The population distributions are assumed to be normal.
- Given SRSs of size n₁ from population 1, and n₂ from population 2, we want to test:

 $H_0: \mu_1 = \mu_2$ against $H_A: \mu_1 \neq \mu_2$

• If the two population means are identical, we would expect the sample means to be relatively close to each other.

Independent Samples

We would want to reject $H_0: \mu_1 = \mu_2$ if \overline{x}_1 and \overline{x}_2 are too far apart, or eqivalently, if $\overline{x}_1 - \overline{x}_2$ is far from 0. Note: The standard deviations of the two populations σ_1 and σ_2 may or may not be equal.

Need to consider two cases:

- (1) Equal standard deviations: $\sigma_1 = \sigma_2 = \sigma$
- (2) Unequal standard deviations: $\sigma_1 \neq \sigma_2$

Independent Samples: Equal Sds

To evaluate $H_0: \mu_1 = \mu_2$, use test statistic

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}.$$

Where
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

is a pooled, or combined, estimate of σ^2 .

Independent Samples: Equal Sds

The pooled estimate $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ combines information from both samples to produce a better estimate of σ^2 .

This is sensible since s_1^2 and s_2^2 estimate the same thing.

9

Independent Samples: Equal Sds

10

12

Under
$$H_0: \mu_1 = \mu_2$$
, the test statistic
$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

has a t-distribution with $n_1 + n_2 - 2$ df.

This is called a two-sample t-test.

Example: Assets and Liabilities

Among the healty firms: $n_1 = 68$ $\overline{x}_1 = 1.73$ $s_1 = 0.639$ Among the failed firms: $n_2 = 33$ $\overline{x}_2 = 0.824$ $s_2 = 0.481$

13

15

Example: Assets and Liabilities

- Since p < 0.001, we can reject H_0 in favor of H_A .
- Note: We can construct a 95% CI for μ_1 μ_2 .

$$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (0.657, 1.15)$$

where t^* is a t-multipler with $n_1 + n_2 - 2$ df

Example: Assets and Liabilities

• The test statistic is,

$$s_{p}^{2} = \frac{(68-1)(0.639)^{2} + (33-1)(0.481)^{2}}{68+33-2} = 0.352$$
$$t = \frac{\overline{x}_{1} - \overline{x}_{2}}{\sqrt{s_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{1.72 - 0.824}{\sqrt{0.352 \left(\frac{1}{68} + \frac{1}{33}\right)}} = 7.12$$

Independent Samples: Unequal SDs

To evaluate $H_0: \mu_1 = \mu_2$ use the test statistic,

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

There is no common estimate for the standard deviation.

17

Example: Assets and Liabilities

- Since p < 0.001, we can reject H_0 in favor of H_A .
- Note: We can construct a 95% CI for μ_1 μ_2 .

$$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)} = (0.670, 1.12)$$

where t^* is a t-multiplier with k df.

Example: Assets and Liabilities

• The test statistic is,

21

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{1.72 - 0.824}{\sqrt{\frac{0.639^2}{68} + \frac{0.481^2}{33}}} = 7.86$$

Two-Sample T-Test in Stata							
. ttesti 68	3 1.72 0.639	33 0.824	0.481, unequ	al			
Two-sample	t test with	unequal v	ariances				
	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
x y	68 33	1.72 .824	.0774901 .0837314	.639 .481	1.565329 .6534448	1.874671 .9945552	
combined	101	1.427248	.0721645	.725244	1.284075	1.57042	
diff		. 896	.1140862		.6690326	1.122967	
Satterthwai Ha: di t = P < t =	ite's degree iff < 0 7.8537 1.0000	s of freed Ho: mean(x : P >	<pre>om: 81.6737) - mean(y) Ha: diff != t = 7.8 t = 0.00</pre>	= diff = 0 537 000	Ha: diff t = 7 P > t = 0	> 0 .8537 .0000	
						23	