Mathematics 231

Lecture 25 Liam O'Brien

Announcements

Reading Today M&M 8.1 493-501 Next class M&M 7.2 447-467

Topics

- Hypothesis testing for a single population proportion
- Calculating power using Stata
- Calculating power by hand

Test for a Population Proportion Given an SRS of size, n, we want to test $H_0: p = p_0$ against $H_A: p \neq p_0$ (two-sided)

Z

Use test statistic:

$$=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

When $H_0: p = p_0$ is true, this statistic has a standard normal distribution if $np_0 \ge 10$ and $n(1-p_0) \ge 10$. Calculate p-value: $2P(Z \ge |z|)$ when H_A is two-sided. Note: $np_0 \ge 10$ and $n(1-p_0) \ge 10$ must be satisfied

Coin Tossing Experiment

- English mathematician John Kerrich flipped a coin 10,000 times and obtained 5067 heads.
- Test whether the proportion of heads differs from 0.50.
- The sample proportion is 0.5067.
- Large sample properties hold.

Coin Tossing Experiment Given n = 10,000 we want to test $H_0: p = 0.5$ against $H_A: p \neq 0.5$ (two-sided).

Use test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.5067 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{10000}}} = 1.34$$

When H_0 is true, this statistic has a standard normal distribution.

p-value = 0.09; fail to reject H_0 and conclude that the population proportion not significantly different from 0.5.

Power Calculations in Stata

If you know the sample size (n), the level of the test (α), the population SD (σ), and the null (μ₀) and alternative (μ_A) means, then the power of a test for a population mean can be done in Stata.
In the command window you can type: sampsi μ₀ μ_A, alpha(α) n(n) sd(σ) onesample

Power Calculations in Stata

. sampsi 0 8.1, sd(26.4) n(110) onesample
Estimated power for one-sample comparison of mean to
hypothesized value

Test Ho: m = 0, where m is the mean in the population

Assumptions:

alpha = 0.0500 (two-sided)
alternative m = 8.1
 sd = 26.4
sample size n = 110

Estimated power:

power = 0.8958