Mathematics 231

Lecture 25 Liam O'Brien

Announcements

Reading

 Today 	M&M 8.1	493-501
 Next class 	M&M 7.2	447-467

Topics

- Hypothesis testing for a single population proportion
- Calculating power using Stata
- Calculating power by hand

Test for a Population Proportion

Given an SRS of size, n, we want to test $H_0: p = p_0$ against $H_A: p \neq p_0$ (two-sided)

Use test statistic: z =

$$=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}(1-p_{0})}{n}}}$$

When $H_0: p = p_0$ is true, this statistic has a standard normal distribution if $np_0 \ge 10$ and $n(1-p_0) \ge 10$. Calculate p-value: 2P(Z > |z|) when H_A is two-sided. Note: $np_0 \ge 10$ and $n(1-p_0) \ge 10$ must be satisfied

Coin Tossing Experiment

- English mathematician John Kerrich flipped a coin 10,000 times and obtained 5067 heads.
- Test whether the proportion of heads differs from 0.50.
- The sample proportion is 0.5067.
- Large sample properties hold.

Coin Tossing Experiment

Given n = 10,000 we want to test H_0 : p = 0.5 against H_A : $p \neq 0.5$ (two-sided).

Use test statistic:

5

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.5067 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{10000}}} = 1.34$$

When H_0 is true, this statistic has a standard normal distribution. p-value = 0.09; fail to reject H_0 and conclude that

the population proportion not significantly different from 0.5.

6

Power Calculations in Stata

- If you know the sample size (n), the level of the test (α), the population SD (σ), and the null (μ₀) and alternative (μ_A) means, then the power of a test for a population mean can be done in Stata.
- In the command window you can type: sampsi μ₀ μ_A, alpha(α) n(n) sd(σ) onesample

Power Calculations in Stata