## Mathematics 231

Lecture 21 Liam O'Brien

## Announcements

| Reading    |         |         |
|------------|---------|---------|
| Today      | M&M 6.1 | 349-369 |
|            | M&M 7.1 | 418-422 |
|            | M&M 8.1 | 488-493 |
| Next class | M&M 6.2 | 372-390 |

## Topics

T-distribution

Confidence intervals for  $\mu$  with unknown  $\sigma$ 

Confidence intervals for p

#### What if We Don't Know $\sigma$ ?

- We usually don't know the population standard deviation, σ.
- Estimate σ using the sample standard deviation
   s.
- This will change our formula for the confidence interval since we will no longer be under a normal distribution (the CLT doesn't help us here).

#### Confidence Intervals ( $\sigma$ unknown)

We can estimate the sd of  $\overline{x}$  using  $\frac{s}{\sqrt{n}}$ ;

this is called the standard error of  $\overline{x}$ . Estimating  $\sigma$  with *s* introduces a new source of variation. As a result the CI needs to be wider. How much wider?

#### Confidence Intervals ( $\sigma$ unknown)

- When n is small, s doesn't estimate σ well, so the CI needs to be quite a bit wider.
- When n is large, s estimates σ better, and the CI only needs to be slightly wider.
- How do we make the interval wider?
- Make the multiplier z\* larger; use the tdistribution (t\*) instead of the standard normal distribution.

#### Student's t-distribution

#### Properties of the t-distribution

- "Bell-shaped" and symmetric similar to the normal distribution.
- More spread out than the normal distribution.
- Exact shape depends on its degrees of freedom.
- As the number if degrees of freedom increases, the corresponding t-distribution looks more like a standard normal distribution.

## Normal versus t-distribution



# Confidence Intervals ( $\sigma$ unknown) Before $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$ had a standard normal

distribution (CLT).

Now  $t = \frac{\overline{x} - \mu}{\sqrt[s]{\sqrt{n}}}$  has a t-distribution with

n-1 degrees of freedom (df) df = amount of information available in data for estimating  $\sigma$ .

## Sampling Distribution of a Sample Mean

Distribution of values taken by the sample mean in all possible samples of size **n** from the population with unknown **σ**.
 For sample 1: SRS of size n → x
<sub>1</sub>, s
<sub>1</sub>, <sup>x
<sub>1</sub>-μ
<sub>s
1</sub>/
</sup>

For sample 2: SRS of size  $n \rightarrow \overline{x}_2, s_2, \frac{\overline{x}_2 - \mu}{s_2 / \sqrt{n}}$ 

#### **CI's from the t-distribution**

Before, we had a CI for  $\mu$  given by,  $\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$ 

Now the CI is given by

 $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$  and  $t^* \frac{s}{\sqrt{n}}$  is the margin of error. Note: This interval is exact when the underlying population has a normal distribution, but is approx. correct when n is "large."

## **Example: Housing Prices**

In an SRS of size 25, we obtain a sample mean of 215, and a sample sd of of 42.

95% CI:  $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$ = 215 ± 2.064  $\frac{42}{\sqrt{25}}$ = (197.7, 232.4) Note with n = 25, df = n-1, and  $t^* = 2.064$ 



Table entry for p and C is the critical value  $t^*$  with probability p lying to its right and probability C lying between  $-t^*$  and  $t^*$ .

| TABLE D   t distribution critical values |                                 |       |         |       |       |       |       |       |       |       |         |         |
|------------------------------------------|---------------------------------|-------|---------|-------|-------|-------|-------|-------|-------|-------|---------|---------|
|                                          | Upper tail probability <i>p</i> |       |         |       |       |       |       |       |       |       |         |         |
| df                                       | .25                             | .20   | .15     | .10   | .05   | .025  | .02   | .01   | .005  | .0025 | .001    | .0005   |
| 1                                        | 1.000                           | 1.376 | 1.963   | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3   | 636.6   |
| 2                                        | 0.816                           | 1.061 | 1.386   | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33   | 31.60   |
| 3                                        | 0.765                           | 0.978 | 1.250   | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21   | 12.92   |
| 4                                        | 0.741                           | 0.941 | 1.190   | 1.555 | 2.132 | 2.176 | 2.999 | 3.747 | 4.604 | 5.598 | 5 802   | 6 860   |
| 6                                        | 0.718                           | 0.920 | 1 1 3 4 | 1 440 | 1 043 | 2.371 | 2.612 | 3.303 | 3 707 | 4 317 | 5 208   | 5 9 5 9 |
| 7                                        | 0.711                           | 0.896 | 1 1 1 9 | 1 415 | 1 895 | 2 365 | 2 517 | 2 998 | 3 499 | 4.029 | 4 785   | 5 408   |
| 8                                        | 0.706                           | 0.889 | 1.108   | 1.397 | 1.860 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501   | 5.041   |
| 9                                        | 0.703                           | 0.883 | 1.100   | 1.383 | 1.833 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297   | 4.781   |
| 10                                       | 0.700                           | 0.879 | 1.093   | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144   | 4.587   |
| 11                                       | 0.697                           | 0.876 | 1.088   | 1.363 | 1.796 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025   | 4.437   |
| 12                                       | 0.695                           | 0.873 | 1.083   | 1.356 | 1.782 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930   | 4.318   |
| 13                                       | 0.694                           | 0.870 | 1.079   | 1.350 | 1.771 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852   | 4.221   |
| 14                                       | 0.692                           | 0.868 | 1.076   | 1.345 | 1.761 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787   | 4.140   |
| 15                                       | 0.691                           | 0.866 | 1.074   | 1.341 | 1.753 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733   | 4.073   |
| 16                                       | 0.690                           | 0.865 | 1.071   | 1.337 | 1.746 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686   | 4.015   |
| 17                                       | 0.689                           | 0.862 | 1.069   | 1.333 | 1 734 | 2.110 | 2.224 | 2.507 | 2.090 | 3.107 | 3.640   | 3.905   |
| 19                                       | 0.688                           | 0.861 | 1.066   | 1 328 | 1 729 | 2 093 | 2 205 | 2 539 | 2.861 | 3174  | 3 579   | 3 883   |
| 20                                       | 0.687                           | 0.860 | 1.064   | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3153  | 3 5 5 2 | 3.850   |
| 21                                       | 0.686                           | 0.859 | 1.063   | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527   | 3.819   |
| 22                                       | 0.686                           | 0.858 | 1.061   | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505   | 3.792   |
| 23                                       | 0.685                           | 0.858 | 1.060   | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485   | 3.768   |
| 24                                       | 0.685                           | 0.857 | 1.059   | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467   | 3.745   |
| 25                                       | 0.684                           | 0.856 | 1.058   | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450   | 3.725   |
| 26                                       | 0.684                           | 0.856 | 1.058   | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435   | 3.707   |
| 27                                       | 0.684                           | 0.855 | 1.057   | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421   | 3.690   |
| 28                                       | 0.683                           | 0.855 | 1.056   | 1.313 | 1.701 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408   | 3.674   |
| 29                                       | 0.683                           | 0.854 | 1.055   | 1.311 | 1.699 | 2.045 | 2.150 | 2.402 | 2.750 | 3.038 | 3.390   | 3.039   |
| 40                                       | 0.681                           | 0.851 | 1.055   | 1 303 | 1.697 | 2.042 | 2.147 | 2.451 | 2.750 | 2 971 | 3.307   | 3.551   |
| 50                                       | 0.679                           | 0.849 | 1.047   | 1 299 | 1.676 | 2.009 | 2 109 | 2 403 | 2 678 | 2 937 | 3 261   | 3 4 9 6 |
| 60                                       | 0.679                           | 0.848 | 1.045   | 1.296 | 1.671 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232   | 3.460   |
| 80                                       | 0.678                           | 0.846 | 1.043   | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195   | 3.416   |
| 100                                      | 0.677                           | 0.845 | 1.042   | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174   | 3.390   |
| 1000                                     | 0.675                           | 0.842 | 1.037   | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098   | 3.300   |
| z*                                       | 0.674                           | 0.841 | 1.036   | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091   | 3.291   |
|                                          | 50%                             | 60%   | 70%     | 80%   | 90%   | 95%   | 96%   | 98%   | 99%   | 99.5% | 99.8%   | 99.9%   |
|                                          | Confidence level C              |       |         |       |       |       |       |       |       |       |         |         |

| 19   | 0.688              | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 |
|------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 20   | 0.687              | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 |
| 21   | 0.686              | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 |
| 22   | 0.686              | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 |
| 23   | 0.685              | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768 |
| 24   | 0.685              | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.745 |
| 25   | 0.684              | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 |
| 26   | 0.684              | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 |
| 27   | 0.684              | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.690 |
| 28   | 0.683              | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 |
| 29   | 0.683              | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.659 |
| 30   | 0.683              | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 |
| 40   | 0.681              | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 |
| 50   | 0.679              | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.109 | 2.403 | 2.678 | 2.937 | 3.261 | 3.496 |
| 60   | 0.679              | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 |
| 80   | 0.678              | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 |
| 100  | 0.677              | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.390 |
| 1000 | 0.675              | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.300 |
| Ζ*   | 0.674              | 0.841 | 1.036 | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091 | 3.291 |
|      | 50%                | 60%   | 70%   | 80%   | 90%   | 95%   | 96%   | 98%   | 99%   | 99.5% | 99.8% | 99.9% |
|      | Confidence level C |       |       |       |       |       |       |       |       |       |       |       |

Note: For a t-distribution with 24 df, 95% of the area falls between -2.064 and +2.064.

#### Finding t Multipliers in Stata

Use the command line for this.

- To find the value that cuts off a certain area (p) to the right under a t-distribution with df degrees of freedom:
- display invttail(df, p)

 For example, "display ttail(24,.025)" gives 2.064.

#### Sampling Distribution for a Proportion

Recall: when n is large (np  $\ge$  10 and n(1-p)  $\ge$  10) then the sampling distribution of  $\hat{p} = \frac{x}{n}$ 

is approximately normal with

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

## Sampling Distribution of a Proportion



#### **CI** for a Proportion

# • A "traditional" 95% CI for p: $\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

where  $\hat{p} = \frac{x}{n}$  is calculated from our sample. The multiplier can of course be changed for any confidence level.

#### **CI** for a Proportion

- There is a problem with this formulation when p is close to 0 or 1.
- Adjustment: Pretend we have 4 additional observations, 2 successes and 2 failures.

$$\tilde{p} \pm z^* \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}$$
where  $\tilde{p} = \frac{x+2}{n+4}$  is the adjusted sample proportion.

#### Example

In an SRS of 100 adults, obtain x = 95 who want better health insurance. 95% CI for p:  $\tilde{p} \pm 1.96 \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}$  $\tilde{p} = \frac{x+2}{n+4} = \frac{95+2}{100+4} = 0.933$ 95% CI for p:  $0.933 \pm 1.96 \sqrt{\frac{0.933(1 - 0.933)}{104}} = (0.885, 0.981)$ A traditional 95% CI for p is (0.907, 0.993)