Mathematics 231

Lecture 20
Liam O'Brien

Announcements

- Reading
- Today M\&M 6.1 353-363

Topics

- Confidence intervals for μ with known σ

Inference

- Inference: From "part" (sample) infer about the "whole" (population).
- Statistical inference: Process of drawing conclusions about population characteristics based on information from a sample.
- Need to be able to quantify the uncertainty inherent in our inferences.

Confidence Intervals

- Confidence intervals for estimating a population parameter (e.g., the mean μ) are based on the sampling distribution of statistics.
- As a result, they report probabilities that state what would happen if we used the method many times.
- To introduce the notion of a confidence interval, we first make the unrealistic assumption that the standard deviation, σ, is known (we relax this later).

Sampling Distribution of a Sample Mean

- Properties of sampling distribution of a sample mean:

1) $\mu_{\bar{x}}=\mu$
2) $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
3) The distribution is normal as $n \rightarrow \infty$

The third property is due to the Central Limit Theorem.

Confidence Intervals

- Consider a population with mean μ and standard deviation σ.
- Assume unrealistically that σ is known.
- Take an SRS of size n from this population: from this sample we calculate the sample mean.
- Given the sample mean, what can we say about the population mean, μ ?

Example: Housing Prices

- Want to estimate the mean housing price for an area of coastal Maine.
- The true mean, μ, in the population is unknown.
- Assume σ is known and is 46 (unrealistically)
- Take an SRS of size $\mathrm{n}=100$ from this population and calculate the sample mean.
- Given the sample mean, what can we say about μ ?

Unbiased but Variable

- Sample mean is an unbiased estimator of μ (from property 1 of sampling distributions).
- But how precise of an estimate does it provide?
- Would a second sample of size 100 produce the same estimate of μ ?
- To answer this question we must consider variability.

Construction of Confidence Intervals

- Take an SRS of size n from a population with mean μ and (assume) known standard deviation σ.
Sample: SRS of size $n \rightarrow \bar{x}$
$\bar{x} \sim N(\mu, \sigma / \sqrt{n})$
Recall: Empirical Rule says that with probability close to 0.95 the sample mean will be $2 \frac{\sigma}{\sqrt{n}}$ points (or 2 SD of \bar{x}) of the population mean μ.

Construction of Confidence Intervals

Note: to say \bar{x} is within $2 \frac{\sigma}{\sqrt{n}}$ points (or 2 SD
of \bar{x}) of the population mean μ is equivalent
to saying that μ is within $2 \frac{\sigma}{\sqrt{n}}$ points of \bar{x}.
So, in approximately 95% of all samples of
size n , the interval $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$ will cover μ.

The Gory Details

We know $P\left(\mu-2 \frac{\sigma}{\sqrt{n}}<\bar{x}<\mu+2 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$
$=P\left(\bar{x}<\mu+2 \frac{\sigma}{\sqrt{n}}\right.$ AND $\left.\bar{x}>\mu-2 \frac{\sigma}{\sqrt{n}}\right)$
$=P\left(\bar{x}-2 \frac{\sigma}{\sqrt{n}}<\mu\right.$ AND $\left.\bar{x}+2 \frac{\sigma}{\sqrt{n}}>\mu\right)$
$=P\left(\bar{x}-2 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+2 \frac{\sigma}{\sqrt{n}}\right)$

Main Point

$$
P\left(\mu-2 \frac{\sigma}{\sqrt{n}}<\bar{x}<\mu+2 \frac{\sigma}{\sqrt{n}}\right)
$$

$$
\begin{array}{r}
P\left(\bar{x}-2 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+2 \frac{\sigma}{\sqrt{n}}\right) \\
\text { random fixed } \quad \text { random }
\end{array}
$$

Statement of Confidence

Based on the sampling distribution of \bar{x} and the empirical rule, we can now state that we are about 95% confident that the interval $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$ will cover μ.
This corresponds to a statement of our uncertainty in using \bar{x} to estimate μ.

Increased Accuracy

The empirical rule is only approximate and is never used in reality by a statistician.
Using normal tables, a 95\% confidence interval
for μ is $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.
Similarly, a 99\% confidence interval for μ is
$\bar{x} \pm 2.57 \frac{\sigma}{\sqrt{n}}$.

Confidence interval for μ has the form $\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}$ where $z^{*}=1.96$ for 95%.

In general, CI has the form: estimate $\pm z^{*} \sigma_{\text {estimate }}$

Example: Housing Prices

- Want to estimate the mean housing prices in an area of coastal Maine.
- The true mean, μ, in the population is unknown.
- Assume σ is known to be 46 (unrealistic).
- Take an SRS of size $\mathrm{n}=100:$ mean $=220$.
- What is the 95% confidence interval for μ ?

Example: Housing Prices

95% confidence interval for $\mu: \bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ 95\% confidence interval for μ :

$$
\begin{aligned}
220 \pm 1.96 \frac{46}{\sqrt{100}}= & 220 \pm 1.96(4.6) \\
& (210.98,229.02)
\end{aligned}
$$

Interpreting Confidence Intervals

- Does this mean that the probability that the population mean, μ, is between $\$ 210.98$ thousand and $\$ 229.98$ thousand is 0.95 ?
- NO!!!!!!!
- If we drew 100 random samples of size 100 and calculated a 95% confidence intervals for each (such that we have 100 intervals), then about 95 of those intervals would cover the true population mean, μ.

Interpretation

- Why are the following incorrect?
- "The interval $(197,233)$ is a 95% interval for the sample mean."
- "In 95% of all possible samples, the sample mean will lie in the interval $(197,233)$ "
- "There is a 95% probability that the population mean lies in the interval $(197,233)$."

Interpretation

- Correct Interpretations
- "There is a 95% probability that the interval generated from a random sample will contain the population mean."
- "A plausible range of values for the true population mean is $(197,233)$."
- "If we repeatedly calculate confidence intervals using this procedure, with different random samples each time, 95% of these intervals will cover the population mean."

Some Features of Confidence Intervals

- Confidence level gives the probability the interval covers the population parameter (e.g., μ. Conventionally 95% is chosen, but any value can be used.
$95 \% \mathrm{CI}: \bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$
$99 \% \mathrm{CI}: \bar{x} \pm 2.57 \frac{\sigma}{\sqrt{n}}$

Some Features of Confidence Intervals

- Margin of error:

Probability is 0.95 that the interval $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$
contains the population mean, μ.
Put another way, \bar{x} is an estimate of μ and the
margin of error is $1.96 \frac{\sigma}{\sqrt{n}}$.

How to Reduce the MOE

1. Increase the sample size.
2. Use a lower level of confidence.
3. Reduce σ.

Sample Size and CI's

The margin of error of the $95 \% \mathrm{CI}$
$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ is $1.96 \frac{\sigma}{\sqrt{n}}$
To obtain a certain margin of error, m,
set $m=1.96 \frac{\sigma}{\sqrt{n}} \Rightarrow n=\left(\frac{1.96 \sigma}{m}\right)^{2}$
Note it is the size of the sample, not of the popluation that determines the MOE.

