Mathematics 231

Lecture 20 Liam O'Brien

Announcements

■ Reading

■ Today M&M 6.1 353-363

2

Topics

■ Confidence intervals for μ with known σ

Inference

- **Inference**: From "part" (sample) infer about the "whole" (population).
- Statistical inference: Process of drawing conclusions about population characteristics based on information from a sample.
- Need to be able to quantify the uncertainty inherent in our inferences.

Confidence Intervals

- Confidence intervals for estimating a population parameter (e.g., the mean μ) are based on the sampling distribution of statistics.
- As a result, they report probabilities that state what would happen if we used the method many times.
- To introduce the notion of a confidence interval, we first make the unrealistic assumption that the standard deviation, σ, is known (we relax this later).

5

Sampling Distribution of a Sample Mean

- Properties of sampling distribution of a sample mean:
 - 1) $\mu_{\bar{x}} = \mu$
 - $2) \ \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
 - 3) The distribution is normal as $n \to \infty$

The third property is due to the Central Limit Theorem.

7

Confidence Intervals

- Consider a population with mean μ and standard deviation σ.
- Assume unrealistically that σ is known.
- Take an SRS of size n from this population: from this sample we calculate the sample mean.
- Given the sample mean, what can we say about the population mean, µ?

Example: Housing Prices

- Want to estimate the mean housing price for an area of coastal Maine.
- The true mean, μ , in the population is unknown.
- Assume σ is known and is 46 (unrealistically)
- Take an SRS of size n = 100 from this population and calculate the sample mean.
- Given the sample mean, what can we say about µ?

Unbiased but Variable

- Sample mean is an unbiased estimator of µ (from property 1 of sampling distributions).
- But how precise of an estimate does it provide?
- Would a second sample of size 100 produce the same estimate of µ?
- To answer this question we must consider variability.

10

Construction of Confidence Intervals

 Take an SRS of size n from a population with mean μ and (assume) known standard deviation σ.

Sample: SRS of size $n \to \overline{x}$

$$\overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Recall: Empirical Rule says that with probability close to 0.95 the sample mean will be $2\frac{\sigma}{\sqrt{n}}$ points (or 2 SD of \overline{x}) of the population mean μ .

Construction of Confidence Intervals

Note: to say \overline{x} is within $2\frac{\sigma}{\sqrt{n}}$ points (or 2 SD of \overline{x}) of the population mean μ is equivalent to saying that μ is within $2\frac{\sigma}{\sqrt{n}}$ points of \overline{x} . So, in approximately 95% of all samples of size n, the interval $\overline{x} \pm 2\frac{\sigma}{\sqrt{n}}$ will cover μ .

The Gory Details

We know
$$P\left(\mu - 2\frac{\sigma}{\sqrt{n}} < \overline{x} < \mu + 2\frac{\sigma}{\sqrt{n}}\right) \approx 0.95$$

 $= P\left(\overline{x} < \mu + 2\frac{\sigma}{\sqrt{n}} \text{ AND } \overline{x} > \mu - 2\frac{\sigma}{\sqrt{n}}\right)$
 $= P\left(\overline{x} - 2\frac{\sigma}{\sqrt{n}} < \mu \text{ AND } \overline{x} + 2\frac{\sigma}{\sqrt{n}} > \mu\right)$
 $= P\left(\overline{x} - 2\frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + 2\frac{\sigma}{\sqrt{n}}\right)$

Main Point

$$P\left(\mu - 2\frac{\sigma}{\sqrt{n}} < \overline{x} < \mu + 2\frac{\sigma}{\sqrt{n}}\right)$$
fixed random fixed
$$P\left(\overline{x} - 2\frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + 2\frac{\sigma}{\sqrt{n}}\right)$$
random fixed random

14

Statement of Confidence

Based on the sampling distribution of \overline{x} and the empirical rule, we can now state that we are about

95% confident that the interval $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$ will

cover μ .

This corresponds to a statement of our uncertainty in using \bar{x} to estimate μ .

Increased Accuracy

The empirical rule is only approximate and is never used in reality by a statistician.

Using normal tables, a 95% confidence interval

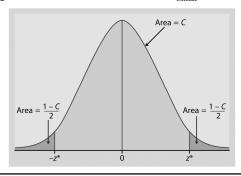
for
$$\mu$$
 is $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

Similarly, a 99% confidence interval for μ is $\bar{x} \pm 2.57 \frac{\sigma}{\sqrt{n}}$.

Confidence interval for μ has the form $\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$

where $z^* = 1.96$ for 95%.

In general, CI has the form: estimate $\pm z^* \sigma_{\text{estimate}}$



Example: Housing Prices

- Want to estimate the mean housing prices in an area of coastal Maine.
- The true mean, μ , in the population is unknown.
- Assume σ is known to be 46 (unrealistic).
- Take an SRS of size n = 100: mean = 220.
- What is the 95% confidence interval for μ ?

18

Example: Housing Prices

95% confidence interval for $\mu: \overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

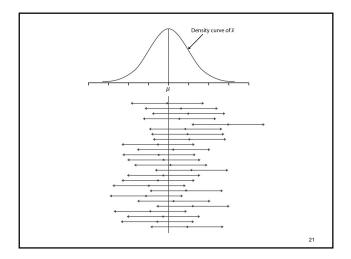
95% confidence interval for μ :

$$220 \pm 1.96 \frac{46}{\sqrt{100}} = 220 \pm 1.96(4.6)$$
(210.98, 229.02)

19

Interpreting Confidence Intervals

- Does this mean that the probability that the population mean, μ, is between \$210.98 thousand and \$229.98 thousand is 0.95?
- NO!!!!!!!
- If we drew 100 random samples of size 100 and calculated a 95% confidence intervals for each (such that we have 100 intervals), then about 95 of those intervals would cover the true population mean, µ.



Interpretation

- Why are the following incorrect?
 - "The interval (197,233) is a 95% interval for the sample mean."
 - "In 95% of all possible samples, the sample mean will lie in the interval (197,233)"
 - "There is a 95% probability that the population mean lies in the interval (197,233)."

22

Interpretation

- Correct Interpretations
 - "There is a 95% probability that the interval generated from a random sample will contain the population mean."
 - "A plausible range of values for the true population mean is (197,233)."
 - "If we repeatedly calculate confidence intervals using this procedure, with different random samples each time, 95% of these intervals will cover the population mean."

23

Some Features of Confidence Intervals

■ Confidence level gives the probability the interval covers the population parameter (e.g., µ). Conventionally 95% is chosen, but any value can be used.

95% CI:
$$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

99% CI:
$$\bar{x} \pm 2.57 \frac{\sigma}{\sqrt{n}}$$

Some Features of Confidence Intervals

■ Margin of error:

Probability is 0.95 that the interval $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ contains the population mean, μ . Put another way, \overline{x} is an estimate of μ and the margin of error is $1.96 \frac{\sigma}{\sqrt{n}}$. How to Reduce the MOE

- 1. Increase the sample size.
- 2. Use a lower level of confidence.
- 3. Reduce σ .

26

Sample Size and CI's

The margin of error of the 95% CI

$$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$
 is $1.96 \frac{\sigma}{\sqrt{n}}$

To obtain a certain margin of error, m,

set
$$m = 1.96 \frac{\sigma}{\sqrt{n}} \Rightarrow n = \left(\frac{1.96\sigma}{m}\right)^2$$

Note it is the size of the sample, not of the population that determines the MOE.