

Topics

- Bayes Rule
- Binomial Distribution
- Sampling Distribution of a Proportion

Bayes' Rule

- The first steps in solving a nasty probability problem:
- Define your events
- Write down all the information you know
- Write down what you're looking for
- Potential problem: You want $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, but you have $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$.
- Potential solution: Bayes' Rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{C}\right) P\left(B^{C}\right)}
$$

Bayes' Rule

- Consider a test for smoking administered to high school students
- $\mathrm{P}(\mathrm{T}+\mid$ Smoker $)=0.209 ; \mathrm{P}(\mathrm{T}-\mid$ Nonsmoker $)=$ 0.967
- $\mathrm{P}($ Smoker $)=0.15$
- What is $\mathrm{P}($ Smoker | $\mathrm{T}+$)?
- Answer: 0.037

Binomial Distribution

- Let B be a dichotomous (Bernoulli) random variable with
$P(B=1)=p$
$\mathrm{P}(\mathrm{B}=0)=1-\mathrm{p}$
e.g., heads/tails, male/female, success/failure
- Consider a fixed number, \mathbf{n}, of independent observations with constant probability of "success" (p) for each trial.
- Let X denote the total number of successes observed in n trials.

Binomial Distribution

- Then X has a binomial distribution, denoted $\mathrm{X} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$,
$P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}$
$n=$ number of trials
$\mathrm{x}=$ number of successes
$\mathrm{p}=$ probability of success
$\binom{\mathrm{n}}{\mathrm{x}}=\frac{n!}{x!(n-x)!}$

Binomial Mean and SD

- If $\mathrm{X} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$, then the mean and SD of X are, $\mu_{X}=n p$
$\sigma_{X}=\sqrt{n p(1-p)}$
- Example: If $\mathrm{X} \sim \operatorname{Bin}(10,0.5)$ then,

Mean $=10 * 0.5=5$
$\mathrm{SD}=(10 * 0.5 * 0.5)^{0.5}=1.6$

Sample Proportion

- Let $\mathrm{X} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$.

Consider the sample proportion, $\hat{p}=\frac{x}{n}$
The mean and SD of the sample proportion are,
$\mu_{\hat{p}}=p$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

Sampling Distribution for a Proportion

- When n is large ($\mathrm{np} \geq 10$ and $\mathrm{n}(1-\mathrm{p}) \geq 10$) then the sampling distribution of $\hat{p}=\frac{x}{n}$ is approximately normal with $\mu_{\hat{p}}=p$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

ESP Experiment

- 5 cards with symbols; identify symbols with ESP
- Conducted 60,000 trials
- If no ESP, P(guess correctly) $=1 / 5$
- Expected number correct $=60000 / 5=12,000$
- Actual result: 12,489
(sample proportion=0.20815)
- Is this result likely to have occurred by chance alone?

ESP Experiment

- When n is large (check assumptions), the sampling distribution of $\hat{p}=\frac{x}{n}$ is approximately normal with
$\mu_{\hat{p}}=p=0.2$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.2(1-0.2)}{60000}}=.00163$

ESP Experiment

- If there is no ESP are we likely to obtain a sample proportion of 0.20815 ?
- Standardize:
- Let $Z=(0.20815-0.2) / 0.001623=4.99$
- $\mathrm{P}(\mathrm{Z}>4.99)=0.0000003$

