Mathematics 231

Lecture 18 Liam O'Brien

Announcements

Reading

Today	M&M 5.1	311-331
Next	M&M 5.2	335-346

2

Topics

- Bayes Rule
- Binomial Distribution
- Sampling Distribution of a Proportion

Bayes' Rule

- The first steps in solving a nasty probability problem:
 - Define your events
 - Write down all the information you know
 - Write down what you're looking for
- Potential problem: You want P(B|A), but you have P(A | B).
- Potential solution: Bayes' Rule

$$P(B | A) = \frac{P(A | B)P(B)}{P(A | B)P(B) + P(A | B^{C})P(B^{C})}$$

1

Bayes' Rule

- Consider a test for smoking administered to high school students
- P(T+ | Smoker) = 0.209; P(T- | Nonsmoker) = 0.967
- P(Smoker) = 0.15
- What is P(Smoker | T+)?
- Answer: 0.037

Binomial Distribution

• Let B be a dichotomous (Bernoulli) random variable with

$$P(B=1) = p$$

$$P(B=0) = 1 - p$$

e.g., heads/tails, male/female, success/failure

- Consider a fixed number, **n**, of **independent** observations with constant probability of "success" (**p**) for each trial.
- Let X denote the total number of successes observed in n trials.

6

Binomial Distribution

Then X has a binomial distribution, denoted X~Bin(n, p),

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

- n = number of trials
- x = number of successes
- p = probability of success

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Binomial Mean and SD

• If X~Bin(n, p), then the mean and SD of X are, $\mu_x = np$

$$\sigma_x = \sqrt{np(1-p)}$$

 Example: If X~Bin(10, 0.5) then, Mean = 10*0.5 = 5 SD = (10*0.5*0.5)^{0.5} = 1.6

Sample Proportion

• Let $X \sim Bin(n, p)$.

Consider the sample proportion, $\hat{p} = \frac{x}{n}$

The mean and SD of the sample proportion are,

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling Distribution for a Proportion

• When n is large (np \ge 10 and n(1-p) \ge 10) then the sampling distribution of $\hat{p} = \frac{x}{n}$

11

is approximately normal with

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

ESP Experiment

• When n is large (check assumptions), the sampling distribution of $\hat{p} = \frac{x}{n}$ is approximately normal with $\mu_{\hat{p}} = p = 0.2$ $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.2(1-0.2)}{60000}} = .00163$

ESP Experiment

15

- If there is no ESP are we likely to obtain a sample proportion of 0.20815?
- Standardize:
- Let Z = (0.20815 0.2)/0.001623 = 4.99
- P(Z > 4.99) = 0.0000003