Mathematics 231

Lecture 17 Liam O'Brien

Announcements

Reading		
Today	M&M 4.3	258-267
	M&M 4.4	270-286
	M&M 4.5	289-303
Next class	M&M 5.1	311-331

Topics

Random Variables and Expected Values
Discrete random variables
Continuous random variables
Means and variances
Rules for means and variances

Random Variables

- Random Variable: A variable whose values are determined by the outcome of a random phenomenon.
- Discrete Random Variable: A variable having a finite number of possible values.
- If X is a discrete random variable with k possible values, its probability distribution is:

\mathbf{x}_1	x ₂	x ₃		$\mathbf{x}_{\mathbf{k}}$
\mathbf{p}_1	p_2	p ₃	•••	p_k

Example

Outcome of tossing a fair coin four times. $S = \{HHHH, HHHT, HHTH, \dots, TTTT\}$ $P(HHHH) = P(HHHT) = ... = P(TTTT) = (0.5)^4 = 1/16$ Let X be the count of number of heads in 4 tosses. X is a discrete random variable with 5 possible values (0,1,2,3,4), its probability distribution is: Value: $\left(\right)$ 1 2 3 Probability:1/16 4/16 6/16 4/16 1/16

		НТТН		
		HTHT		
	HTTT	THTH	НННТ	
	THTT	HHTT	HHTH	
	TTHT	THHT	HTHH	
TTTT	TTTH	TTHH	ТННН	НННН
<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 2	<i>X</i> = 3	<i>X</i> = 4

Continuous R.V.

- Continuous Random Variable: A variable taking all possible values in an interval of numbers.
- If X is a continuous random variable, its probability distribution is described by a **density curve** and the probability of an event is the area under the curve.

Mean of Discrete Random Variable

If X is a discrete random variable with k possible values, its probability distribution is:
 Value: x₁ x₂ x₃ ... x_k
 Probability: p₁ p₂ p₃ ... p_k

Mean (or "expected value") of X, denoted µ_X, is given by

 $E(X) = \mu_X = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_k p_k$

Rules for Means

Rule 1: If X is a random variable, with mean μ_X and *a* and *b* are fixed constants, then the mean of a+bX is

$a+b \mu_X$

Rule 2: If X and Y are random variables with means µ_X and µ_Y, respectively, then the mean of X+Y is

$\mu_{\rm X} + \mu_{\rm Y}$

Variance of Discrete Random Variable

If X is a discrete random variable with k possible values, its probability distribution is:
 Value: x₁ x₂ x₃ ... x_k
 Probability: p₁ p₂ p₃ ... p_k
 The variance of X, denoted by σ²_X is given by
 Var(X) = σ²_X = (x₁- μ_X)² p₁ + (x₂- μ_X)² p₂ + ... + (x_k- μ_X)² p_k

Rules for Variances

Rule 1: If X is a random variable, with variance σ_X^2 , and *a* and *b* are fixed constants, then the variance of a + bX is

 $b^2 \sigma_X^2$

Rule 2: If X and Y are **independent** random variables with variances σ_X^2 and σ_Y^2 , respectively, then the variance of X+Y or X-Y is

$$\sigma_{X}^{2} + \sigma_{Y}^{2}$$

Rules for Variances

Rule 3: If X and Y have correlation, ρ, then the variance of X+Y is

$$\sigma_{X}^{2} + \sigma_{Y}^{2} + 2\rho\sigma_{X}\sigma_{Y}$$

and the variance of X-Y is

$$\sigma_{X}^{2} + \sigma_{Y}^{2} - 2\rho\sigma_{X}\sigma_{Y}$$

Notes on Variances

Note 1: Standard deviation of X, σ_X, is simply the square-root of the variance of X.

Note 2: If X and Y are independent, their correlation is zero (ρ = 0).