Mathematics 231

Lecture 17 Liam O'Brien

Announcements

2

Reading

■ Today	M&M 4.3	258-267
	M&M 4.4	270-286
	M&M 4.5	289-303
 Next class 	M&M 5.1	311-331

Topics

- Random Variables and Expected Values
 - Discrete random variables
 - Continuous random variables
 - Means and variances
 - Rules for means and variances

Random Variables

- **Random Variable**: A variable whose values are determined by the outcome of a random phenomenon.
- Discrete Random Variable: A variable having a finite number of possible values.
- If X is a discrete random variable with k possible values, its probability distribution is:

x ₁	\mathbf{x}_2	x ₃		$\mathbf{x}_{\mathbf{k}}$
p_1	p ₂	p ₃	•••	p_k

Example

 Outcome of tossing a fair coin four times. S = {HHHH,HHHT,HHTH,...,TTTT} P(HHHH) = P(HHHT)=...=P(TTTT)=(0.5)⁴=1/16 Let X be the count of number of heads in 4 tosses. X is a discrete random variable with 5 possible values (0,1,2,3,4), its probability distribution is: Value: 0 1 2 3 4 Probability:1/16 4/16 6/16 4/16 1/16

5

TTTT	HTTT THTT TTHT TTTH	HTTH HTHT THTH HHTT THHT TTHH	НННТ ННТН НТНН ТННН	нннн
<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 2	<i>X</i> = 3	<i>X</i> = 4

Continuous R.V.

- Continuous Random Variable: A variable taking all possible values in an interval of numbers.
- If X is a continuous random variable, its probability distribution is described by a **density curve** and the probability of an event is the area under the curve.

Mean of Discrete Random Variable

• If X is a discrete random variable with k possible values, its probability distribution is:

Mean (or "expected value") of X, denoted μ_x, is given by

11

$$E(X) = \mu_X = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_k p_k$$

• **Rule 1**: If X is a random variable, with mean μ_X and *a* and *b* are fixed constants, then the mean of a+bX is

a+b $\mu_{\rm X}$

Rule 2: If X and Y are random variables with means µ_X and µ_Y, respectively, then the mean of X+Y is

13

15

 $\mu_{\rm X} + \mu_{\rm Y}$

Variance of Discrete Random Variable

• If X is a discrete random variable with k possible values, its probability distribution is:

Value: $x_1 \ x_2 \ x_3 \ \dots \ x_k$ Probability: $p_1 \ p_2 \ p_3 \ \dots \ p_k$ • The variance of X, denoted by σ^2_X is given by $Var(X) = \sigma^2_X = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + \dots + (x_k - \mu_X)^2 p_k$

14

16

Rules for Variances

• **Rule 1**: If X is a random variable, with variance σ_X^2 , and *a* and *b* are fixed constants, then the variance of a + bX is

 $b^2 \sigma_X^2$

Rule 2: If X and Y are independent random variables with variances σ²_X and σ²_Y, respectively, then the variance of X+Y or X-Y is

$$\sigma_{X}^{2} + \sigma_{Y}^{2}$$

Rules for Variances

Rule 3: If X and Y have correlation, ρ, then the variance of X+Y is

$$\sigma^{\,{}_{_{X}}}_{\phantom{_{X}}}+\sigma^{\,{}_{_{Y}}}_{\phantom{_{Y}}}+2\,\rho\,\sigma_{_{X}}\sigma_{_{Y}}$$

and the variance of X-Y is

$$\sigma_{X}^{2} + \sigma_{Y}^{2} - 2\rho\sigma_{X}\sigma_{Y}$$

Notes on Variances

- Note 1: Standard deviation of X, σ_x, is simply the square-root of the variance of X.
- Note 2: If X and Y are independent, their correlation is zero (ρ = 0).

17