

Announcements

- Reading
- Today M\&M 4.3 258-267

M\&M $4.4 \quad 270-286$
M\&M 4.5 289-303

- Next class M\&M 5.1 311-331

Topics

- Random Variables and Expected Values
- Discrete random variables
- Continuous random variables
- Means and variances
- Rules for means and variances

Random Variables

- Random Variable: A variable whose values are determined by the outcome of a random phenomenon.
- Discrete Random Variable: A variable having a finite number of possible values.
- If X is a discrete random variable with k possible values, its probability distribution is:

x_{1}	x_{2}	x_{3}	\ldots	x_{k}
p_{1}	p_{2}	p_{3}	\ldots	p_{k}

Example

- Outcome of tossing a fair coin four times. $\mathrm{S}=\{\mathrm{HHHH}, \mathrm{H} H H T, H H T H, \ldots$, TTTT $\}$ $\mathrm{P}(\mathrm{HHHH})=\mathrm{P}(\mathrm{HHHT})=\ldots=\mathrm{P}($ TTTT $)=(0.5)^{4}=1 / 16$
Let X be the count of number of heads in 4 tosses.
X is a discrete random variable with 5 possible values $(0,1,2,3,4)$, its probability distribution is:
Value: $\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$

Continuous R.V.

- Continuous Random Variable: A variable taking all possible values in an interval of numbers.
- If X is a continuous random variable, its probability distribution is described by a density curve and the probability of an event is the area under the curve.

Mean of Discrete Random Variable

- If X is a discrete random variable with k possible values, its probability distribution is:
$\begin{array}{llllll}\text { Value: } & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{\mathrm{k}}\end{array}$
Probability:
$\begin{array}{lllll}p_{1} & p_{2} & p_{3} & \cdots & p_{k}\end{array}$
- Mean (or "expected value") of X, denoted μ_{X}, is given by
$\mathrm{E}(\mathrm{X})=\mu_{\mathrm{x}}=\mathrm{x}_{1} \mathrm{p}_{1}+\mathrm{x}_{2} \mathrm{p}_{2}+\mathrm{x}_{3} \mathrm{p}_{3}+\ldots+\mathrm{x}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}$

Rules for Means

- Rule 1: If X is a random variable, with mean μ_{X} and a and b are fixed constants, then the mean of $a+b X$ is

$$
\mathrm{a}+\mathrm{b} \mu_{\mathrm{x}}
$$

- Rule 2: If X and Y are random variables with means μ_{X} and μ_{Y}, respectively, then the mean of $\mathrm{X}+\mathrm{Y}$ is

$$
\mu_{\mathrm{x}}+\mu_{\mathrm{Y}}
$$

Variance of Discrete Random Variable

- If X is a discrete random variable with k possible values, its probability distribution is:
Value: $\begin{array}{llllll}x_{1} & x_{2} & x_{3} & \ldots & x_{k}\end{array}$
Probability: $\quad \begin{array}{lllll}\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \cdots & \mathrm{p}_{\mathrm{k}}\end{array}$
- The variance of X , denoted by $\sigma^{2}{ }_{\mathrm{X}}$ is given by $\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}^{2}=\left(\mathrm{x}_{1}-\mu_{\mathrm{x}}\right)^{2} \mathrm{p}_{1}+\left(\mathrm{x}_{2}-\mu_{\mathrm{x}}\right)^{2} \mathrm{p}_{2}+\ldots+\left(\mathrm{x}_{\mathrm{k}}-\mu_{\mathrm{x}}\right)^{2} \mathrm{p}_{\mathrm{k}}$

Rules for Variances

- Rule 1: If X is a random variable, with variance $\sigma^{2}{ }_{\mathrm{X}}$, and a and b are fixed constants, then the variance of $a+b X$ is

$$
\mathrm{b}^{2} \sigma_{\mathrm{x}}^{2}
$$

- Rule 2: If X and Y are independent random variables with variances $\sigma^{2}{ }_{\mathrm{X}}$ and $\sigma^{2}{ }_{\mathrm{Y}}$, respectively, then the variance of $\mathrm{X}+\mathrm{Y}$ or $\mathrm{X}-\mathrm{Y}$ is

$$
\sigma_{\mathrm{X}}^{2}+\sigma_{\mathrm{Y}}^{2}
$$

Rules for Variances

- Rule 3: If X and Y have correlation, ρ, then the variance of $\mathrm{X}+\mathrm{Y}$ is

$$
\sigma_{\mathrm{X}}^{2}+\sigma_{\mathrm{Y}}^{2}+2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}
$$

and the variance of $\mathrm{X}-\mathrm{Y}$ is

$$
\sigma_{\mathrm{X}}^{2}+\sigma_{\mathrm{Y}}^{2}-2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}
$$

Notes on Variances

- Note 1: Standard deviation of $\mathrm{X}, \sigma_{\mathrm{X}}$, is simply the square-root of the variance of X .
- Note 2: If X and Y are independent, their correlation is zero $(\rho=0)$.

