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AnnouncementsAnnouncements

�� ReadingReading

�� TodayToday M&M 2.3M&M 2.3 119119--121121

M&M 2.4M&M 2.4 125125--132132

Supplemental   Regression to the Supplemental   Regression to the 

MeanMean

�� Next classNext class M&M 2.5M&M 2.5 148148--151151

M&MM&M 2.62.6 154154--159    159    
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Stuff To DoStuff To Do

�� Regression to the MeanRegression to the Mean

�� TransformationsTransformations
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Regression to the MeanRegression to the Mean

�� Regression to the mean refers to the following Regression to the mean refers to the following 

““regression effectregression effect””::

�� Extremes on one variable, say X, are less Extremes on one variable, say X, are less 

likely to be extremes on the other variable, likely to be extremes on the other variable, 

say Y.say Y.
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Example: Regression to the MeanExample: Regression to the Mean

�� Consider a set of software companiesConsider a set of software companies’’ stock stock 

prices in 1999 and 2000.prices in 1999 and 2000.

�� In 1999, the mean stock price for this set of In 1999, the mean stock price for this set of 

companies was $74/share, with SD = 12.5.companies was $74/share, with SD = 12.5.

�� In 2000, the mean stock price for this set of In 2000, the mean stock price for this set of 

companies was $74/share, with SD = 12.5.companies was $74/share, with SD = 12.5.

�� It seems that nothing affected the market It seems that nothing affected the market 

differentially between the two years.differentially between the two years.
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Example:  Regression to the MeanExample:  Regression to the Mean

�� On closer examination, the following surprising On closer examination, the following surprising 

result emerged:result emerged:

�� Companies with stock prices below average in 1999 Companies with stock prices below average in 1999 

tended to gain $5 to $10 per share in 2000.tended to gain $5 to $10 per share in 2000.

�� Companies with stock prices above average in 1999 Companies with stock prices above average in 1999 

tended to lose $5 to $10 per share in 2000.tended to lose $5 to $10 per share in 2000.

�� Companies that were below average in 1999 Companies that were below average in 1999 

showed an improvement in 2000, and vice versa.showed an improvement in 2000, and vice versa.
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Regression to the Mean:  Why?Regression to the Mean:  Why?

�� Consider a company with an average stock price Consider a company with an average stock price 

of $90/share in 1999.  What is the prediction of of $90/share in 1999.  What is the prediction of 

the average stock price in 2000?the average stock price in 2000?

Price in 2000 = a + b (price in 1999)Price in 2000 = a + b (price in 1999)
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Regression to the Mean:  Why?Regression to the Mean:  Why?

�� Suppose the correlation between 1999 prices Suppose the correlation between 1999 prices 

and 2000 prices is r = 0.6.and 2000 prices is r = 0.6.
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Regression to the Mean:  Intuition?Regression to the Mean:  Intuition?

�� Company with a 1999 stock price of Company with a 1999 stock price of 
$90/share.  What is the predicted 2000 price?$90/share.  What is the predicted 2000 price?

�� Consider 3 scenarios:Consider 3 scenarios:

1.1. ““TrueTrue”” worth is $80/share but by chance the price worth is $80/share but by chance the price 
is higher.is higher.

2.2. ““TrueTrue”” worth is $100/share but by chance the worth is $100/share but by chance the 
price is lower.price is lower.

3.3. ““TrueTrue”” worth is $90/share; chance played no role.worth is $90/share; chance played no role.

�� Which scenario is most/less likely?Which scenario is most/less likely?
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Regression to the Mean:  Other Regression to the Mean:  Other 

ExamplesExamples

�� Students who score high on the midterm tend to Students who score high on the midterm tend to 

score high, but not as high on the final.score high, but not as high on the final.

�� A baseball player who has a spectacular rookie A baseball player who has a spectacular rookie 

year tends to not perform as well his/her second year tends to not perform as well his/her second 

year (sophomore slump).year (sophomore slump).

�� Tall parents tend to have children who are tall, Tall parents tend to have children who are tall, 

but not as tall.but not as tall.
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Origins of Origins of ““Regression?Regression?””

�� This dates back to Galton who was trying to This dates back to Galton who was trying to 

figure out whether a childfigure out whether a child’’s height could be s height could be 

predicted by his/her parentspredicted by his/her parents’’ heights.heights.

�� He found that it could, but that really tall He found that it could, but that really tall 

parents, tended to have children shorter than parents, tended to have children shorter than 

they were, and vice versa.they were, and vice versa.

�� He called this He called this ““reversion to mediocrityreversion to mediocrity”” and and 

later changed this to later changed this to ““regression to mediocrity.regression to mediocrity.””
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TransformationsTransformations

�� Transformations are useful if the regression Transformations are useful if the regression 

assumptions are not met.assumptions are not met.

�� Recall the assumptions:Recall the assumptions:

1.1. Conditional mean of Conditional mean of YY is a linear function of is a linear function of XX..

2.2. Conditional SD of Conditional SD of YY is constant for all is constant for all X.X.

�� We often make an additional assumption:We often make an additional assumption:

3.3. The conditional distribution of The conditional distribution of YY is a normal is a normal 

distribution for any value of distribution for any value of xx..



13

Checking Regression AssumptionsChecking Regression Assumptions

�� Examine the residual plot.Examine the residual plot.

�� If the assumptions are not met, what can we do?If the assumptions are not met, what can we do?

�� Pretend they are (the Pretend they are (the ““ostrichostrich”” approach).approach).

�� Consider more complex Consider more complex ““nonlinearnonlinear”” models.models.

�� Transform data to conform to assumptions.Transform data to conform to assumptions.

�� What are the implications of using the ostrich What are the implications of using the ostrich 

approach?approach?

�� WeWe’’ll consider this last option.ll consider this last option.
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Example:  Brain versus Body WeightExample:  Brain versus Body Weight
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Example:  Brain versus Body WeightExample:  Brain versus Body Weight
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Nonlinear TransformationsNonlinear Transformations

�� Recall:Recall: Earlier we discussed linear Earlier we discussed linear 

transformations; here we need nonlinear transformations; here we need nonlinear 

transformations.transformations.

�� Nonlinear transformations can:Nonlinear transformations can:

�� Alter the shape of distributions, making skewed Alter the shape of distributions, making skewed 

distributions more symmetric.distributions more symmetric.

�� Alter the conditional SD.Alter the conditional SD.

�� Change the form of the relationship between two Change the form of the relationship between two 

variables.variables.
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Example:  Brain versus Body WeightExample:  Brain versus Body Weight
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Log Brain Versus the Log Body WeightLog Brain Versus the Log Body Weight
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Common Nonlinear TransformationsCommon Nonlinear Transformations

�� When relationship between Y and X is not When relationship between Y and X is not 

linear, consider transformations of the form Ylinear, consider transformations of the form YPP

and Xand XPP, where, where

p = p = ……--3, 3, --2, 2, --1, 1, --1/2, log, 1/2, 1, 2, 31/2, log, 1/2, 1, 2, 3……

�� ““Ladder of PowersLadder of Powers”” in M&M (weird and in M&M (weird and 

confusing)confusing)

�� ““Circle of PowersCircle of Powers”” (what more people use)(what more people use)
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Ladder of PowersLadder of Powers
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Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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Circle of PowersCircle of Powers
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Circle of PowersCircle of Powers

�� If the pattern of the If the pattern of the scatterplotscatterplot resembles Quadrant I then we resembles Quadrant I then we 

transform y up or x up, if Quadrant II then y up or x down, if transform y up or x up, if Quadrant II then y up or x down, if 

Quadrant III, then y down or x down, if Quadrant IV, x up, y Quadrant III, then y down or x down, if Quadrant IV, x up, y 

down. To transform up, we can square, cube ,etc.; to transform down. To transform up, we can square, cube ,etc.; to transform 

down can use square root, log, inverse, etc.down can use square root, log, inverse, etc.



24

Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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Example:  Life Expectancy and GDPExample:  Life Expectancy and GDP
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