Mathematics 231

Lecture 11

Liam O’Brien

Announcements

m Reading
m Today M&M 2.3 119-121
M&M 2.4 125-132
Supplemental Regression to the
Mean
m Next class ~ M&M 2.5 148-151
M&M 2.6 154-159

Stuff To Do

m Regression to the Mean

m Transformations

Regression to the Mean

m Regression to the mean refers to the following
“regression effect”

m Extremes on one variable, say X, are less
likely to be extremes on the other variable,
say Y.




Example: Regression to the Mean

m Consider a set of software companies’ stock
prices in 1999 and 2000.

m In 1999, the mean stock price for this set of
companies was $74/shate, with SD = 12.5.
= In 2000, the mean stock price for this set of
companies was $74/share, with SD = 12.5.

m It seems that nothing affected the market
differentially between the two years.

Example: Regression to the Mean

m On closer examination, the following surprising
result emerged:

m Companies with stock prices below average in 1999
tended to gain $5 to $10 per share in 2000.

m Companies with stock prices above average in 1999
tended to lose $5 to $10 per share in 2000.

m Companies that were below average in 1999
showed an improvement in 2000, and vice versa.

Regression to the Mean: Why?

m Consider a company with an average stock price
of $90/share in 1999. What is the prediction of
the average stock price in 2000?

Price in 2000 = a + b (price in 1999)

b:ri

Regression to the Mean: Why?

b:ri; a=y-bx
Sy

m Suppose the correlation between 1999 prices
and 2000 prices is r = 0.6.
b= 0.6E =06
12.5
a=74-0.6(74) =29.6

price in 2000 = 29.6+ (0.6)90 = 83.6




Regression to the Mean: Intuition?

m  Company with a 1999 stock price of
$90/share. What is the predicted 2000 price?
m  Consider 3 scenarios:

1. “True” worth is $80/share but by chance the price
is higher.

2. “True” worth is $100/share but by chance the
price is lower.

3. “True” worth is $90/share; chance played no role.
m  Which scenario is most/less likely?

Regression to the Mean: Other
Examples
m Students who score high on the midterm tend to
score high, but not as high on the final.

m A baseball player who has a spectacular rookie
year tends to not perform as well his/her second
year (sophomore slump).

m Tall parents tend to have children who are tall,
but not as tall.

Origins of “Regression?”

m This dates back to Galton who was trying to
figure out whether a child’s height could be
predicted by his/her parents” heights.

m He found that it could, but that really tall
parents, tended to have children shorter than
they were, and vice versa.

m He called this “reversion to mediocrity” and
later changed this to “regression to mediocrity.”
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Transformations

m Transformations are useful if the regression
assumptions are not met.

m Recall the assumptions:
1. Conditional mean of Yis a linear function of X.
2. Conditional SD of Y'is constant for all X.

m We often make an additional assumption:

3. The conditional distribution of Y is a normal
distribution for any value of x.




Checking Regression Assumptions

m Examine the residual plot.
m If the assumptions are not met, what can we do?
m Pretend they are (the “ostrich” approach).
m Consider more complex “nonlineat” models.
m Transform data to conform to assumptions.
m What are the implications of using the ostrich
approach?

m We'll consider this last option.
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Example: Brain versus Body Weight
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Example: Brain versus Body Weight
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Nonlinear Transformations

m Recall: Earlier we discussed linear
transformations; here we need nonlinear
transformations.

m Nonlinear transformations can:
m Alter the shape of distributions, making skewed
distributions more symmetric.
m Alter the conditional SD.

m Change the form of the relationship between two
variables.




Example: Brain versus Body Weight
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Log Brain Versus the Log Body Weight

Logarithm of brain weight
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Logarithm of body weight 18

Common Nonlinear Transformations

m When relationship between Y and X is not
linear, consider transformations of the form Y?
and XP, where

p=...-3,-2,-1,-1/2,10g,1/2,1,2,3...
m “Ladder of Powers” in M&M (weird and
confusing)

m “Circle of Powers” (what more people use)
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Ladder of Powers
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Example: Life Expectancy and GDP
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Circle of Powers
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Circle of Powerts

m If the pattern of the scatterplot resembles Quadrant I then we
transform y up or x up, if Quadrant II then y up or x down, if
Quadrant ITI, then y down or x down, if Quadrant IV, x up, y
down. To transform up, we can square, cube ,etc.; to transform
down can use square root, log, inverse, etc.
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Example: Life Expectancy and GDP
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Example: Life Expectancy and GDP
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Example: Life Expectancy and GDP

Residual Plot -- Original
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Example: Life Expectancy and GDP
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Example: Life Expectancy and GDP

Residual Plot -- Transformed
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