

Stuff To Do

- Regression to the Mean
- Transformations

Regression to the Mean

- Regression to the mean refers to the following "regression effect":
- Extremes on one variable, say X, are less likely to be extremes on the other variable, say Y.

Example: Regression to the Mean

- Consider a set of software companies’ stock prices in 1999 and 2000.
- In 1999, the mean stock price for this set of companies was $\$ 74 /$ share, with $\mathrm{SD}=12.5$.
- In 2000, the mean stock price for this set of companies was $\$ 74 /$ share, with $\mathrm{SD}=12.5$.
- It seems that nothing affected the market differentially between the two years.

Example: Regression to the Mean

- On closer examination, the following surprising result emerged:
- Companies with stock prices below average in 1999 tended to gain $\$ 5$ to $\$ 10$ per share in 2000.
- Companies with stock prices above average in 1999 tended to lose $\$ 5$ to $\$ 10$ per share in 2000.
- Companies that were below average in 1999 showed an improvement in 2000, and vice versa.

Regression to the Mean: Why?

- Consider a company with an average stock price of $\$ 90 /$ share in 1999 . What is the prediction of the average stock price in 2000?

Price in $2000=a+b$ (price in 1999)

$$
\begin{aligned}
& b=r \frac{s_{Y}}{s_{X}} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
$$

Regression to the Mean: Why?

$$
b=r \frac{s_{Y}}{s_{X}} ; \quad a=\bar{y}-b \bar{x}
$$

- Suppose the correlation between 1999 prices and 2000 prices is $r=0.6$.
$b=0.6 \frac{12.5}{12.5}=0.6$
$a=74-0.6(74)=29.6$
price in $2000=29.6+(0.6) 90=83.6$

Regression to the Mean: Intuition?

- Company with a 1999 stock price of $\$ 90 /$ share. What is the predicted 2000 price?
- Consider 3 scenarios:

1. "True" worth is $\$ 80 /$ share but by chance the price is higher.
2. "True" worth is $\$ 100$ /share but by chance the price is lower.
3. "True" worth is $\$ 90 /$ share; chance played no role.

- Which scenario is most/less likely?

Regression to the Mean: Other Examples

- Students who score high on the midterm tend to score high, but not as high on the final.
- A baseball player who has a spectacular rookie year tends to not perform as well his/her second year (sophomore slump).
- Tall parents tend to have children who are tall, but not as tall.

Origins of "Regression?"

- This dates back to Galton who was trying to figure out whether a child's height could be predicted by his/her parents' heights.
- He found that it could, but that really tall parents, tended to have children shorter than they were, and vice versa.
- He called this "reversion to mediocrity" and later changed this to "regression to mediocrity."

Transformations

- Transformations are useful if the regression assumptions are not met.
- Recall the assumptions:

1. Conditional mean of Y is a linear function of X.
2. Conditional SD of Y is constant for all X.

- We often make an additional assumption:

3. The conditional distribution of Y is a normal distribution for any value of x.

Checking Regression Assumptions

- Examine the residual plot.
- If the assumptions are not met, what can we do? - Pretend they are (the "ostrich" approach).
- Consider more complex "nonlinear" models.
- Transform data to conform to assumptions.
- What are the implications of using the ostrich approach?
■ We'll consider this last option.

Example: Brain versus Body Weight

Example: Brain versus Body Weight

Nonlinear Transformations

- Recall: Earlier we discussed linear transformations; here we need nonlinear transformations.
- Nonlinear transformations can:
- Alter the shape of distributions, making skewed distributions more symmetric.
- Alter the conditional SD.
- Change the form of the relationship between two variables.

Example: Brain versus Body Weight

Common Nonlinear Transformations

- When relationship between Y and X is not linear, consider transformations of the form Y^{P} and X^{P}, where

$$
p=\ldots-3,-2,-1,-1 / 2, \log , 1 / 2,1,2,3 \ldots
$$

- "Ladder of Powers" in M\&M (weird and confusing)
■ "Circle of Powers" (what more people use)

Circle of Powers

- If the pattern of the scatterplot resembles Quadrant I then we transform y up or x up, if Quadrant II then y up or x down, if Quadrant III, then y down or x down, if Quadrant IV, x up, y down. To transform up, we can square, cube ,etc.; to transform down can use square root, log, inverse, etc.

Example: Life Expectancy and GDP

