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Abstract

Crystals and Mirror Constructions for Quotients

by

George William Melvin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Constantin Teleman, Chair

This thesis develops a new approach to computing the quantum cohomology of symplectic
reductions of partial flag varieties X, known as weight varieties. Motivated by a conjecture of
Teleman [125], we use a mirror family Landau-Ginzburg model (MP , fP ) of X introduced by
Rietsch [115] to give a conjectural explicit description of the quantum cohomology of weight
varieties. We specialise to the class of polygon spaces Pr,n: these are symplectic reductions
of the complex Grassmannian of 2-planes GrC(2, n) by the maximal torus action. Polygon
spaces in low rank have been classified and the quantum cohomology of these varieties is
known. As a result, we are able to verify our conjectural description explicitly.

In addition, we investigate the appearance of combinatorial structures in representation
theory in the mirror symmetry of complete flag varieties. We show that, on the B-model side,
the extended string cone C i introduced by Caldero [24] to define toric degenerations on the
A-model can be recovered via a discretisation process known as tropicalisation. Specifically,
using a non-standard parameterisation of MB we recover the precise inequalities defining C i.
This provides an explicit approach to results previously obtained by Berenstein-Kazhdan
[13].
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Chapter 1

Introduction

1.1 Background

The phenomenon of mirror symmetry was first observed in the Hodge numbers of pairs
of Calabi-Yau manifolds in the late 1980s by Greene-Plesser [55] and Candelas-Lynker-
Schimmrigk [25]. In taking a Calabi-Yau resolution of the quotient of the smooth quintic
three-fold X ⊆ P4 by the natural action of Z5

5, Greene-Plesser provided one of the first mirror
constructions, constructing a family of mirrors {Mω} to X. The subsequent calculation, by
Candelas-de la Ossa-Greene-Parkes [26], of enumerative invariants of X by period calcula-
tions on the mirror family {Mω} stunned the algebraic geometry community and hinted at
a remarkable connection between mirror pairs.

In this section we recall certain aspects of the development of mirror symmetry since this
original contribution.

Mirror constructions, mirror conjectures and quantum
cohomology

Batyrev [6] generalised the Greene-Plesser construction, providing a general framework to
construct mirror candidates for Calabi-Yau hypersurfaces in toric varieties. These methods
were later extended to Calabi-Yau complete intersections in toric varieties [8] . To construct
a mirror candidate of Calabi-Yau hypersurface in a (Fano, Gorenstein) toric variety, Batyrev
used the moment polytope of the toric variety. He showed that the toric variety is Fano if
and only if its moment polytope is reflexive, In this case, the dual polytope is also reflexive
and corresponds to a Fano toric variety. The mirror candidates are then constructed from
data attached to the dual reflexive polytope.

Givental [48] proposed an extension of mirror symmetry to Fano manifolds, conjecturing
that the mirror to a Fano manifold X (A-model) is a Landau-Ginzburg model (M, f) (B-
model), where M → T is a smooth family of varieties with quasi-affine total space and
f : M → C is a nonconstant holomorphic function called the superpotential. Givental’s
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mirror conjecture states an equivalence between the quantum cohomology D-module of X
and the D-module generated by certain oscillatory integrals

∫
Γt⊆Mt

exp(ft/~)ωt associated

with a family (Mt, ft, ωt)t∈T . Here (Mt, ft, ωt)t∈T is the data of non-vanishing top forms ωt
on the fibres of the family M → T , ft is the restriction of f to each fibre, and Γt is an
appropriate family of Morse-theoretic middle dimensional cycles of Re(ft). In this setting,
mirror symmetry for the pair (X, (M, f)) predicts an isomorphism

qH∗(X) ∼= Jac(f) := C[M ]/(∂f)

between the (small) quantum cohomology algebra qH∗(X) of X and the Jacobian ring of
f . The quantum structure is given by variation in the family. In particular, homogeneous
spaces for compact, connected Lie groups should exhibit mirror-symmetric phenomena.

In the case of complete flag manifolds SLn+1(C)/B, Givental verified the mirror conjecture
by considering a “2-dimensional Toda lattice” [49]. Starting from a (complete) Gelfand-
Tsetlin quiver having (n+ 1)(n+ 2)/2 vertices,

•

• •

• • •

· · · · · · •

• • · · · • •

Givental constructs a trivial family Yt, t ∈ (C×)n, with each Yt isomorphic to an n(n+ 1)/2-
dimensional complex algebraic torus. The superpotential and volume forms are constructed
from the combinatorial data of the quiver. The relation with the Toda lattice was later
exploited to provide presentations of the quantum cohomology for complete flag manifolds
G/B ([50] in type A; [83] in general type).

Givental’s construction and mirror conjectures are generalised by Batyrev-Ciocan-Fontanine-
Kim-van Straten (BCKS) in [10] (see also [9]) to provide a conjectural mirror family to
complete intersections in partial flag manifolds SLn+1(C)/P . The initial input is now a (de-
generate) Gelfand-Tsetlin quiver corresponding to the stabiliser P of a fixed partial flag in
Cn+1. From this data is constructed a toric degeneration of SLn+1(C)/P to a (in general,
singular) Gorenstein Fano toric variety VP (see also [124], [54]). The conjectural mirror fam-
ily to SLn+1(C)/P is now a small toric desingularisation V̂P of V ∗P [7], where V ∗P is the toric
variety whose moment polytope is dual to that of VP . In certain cases, the generalised GKZ
hypergeometric series ([46]) of the toric variety V̂P is seen to give a solution to the quantum
D-module of SLn+1(C)/P [10, Section 5].
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The theory of standard monomial bases, due to Lakshmibai-Musili-Seshadri [92], provides
a monomial basis for spaces of sections of projective embeddings of partial flag varieties G/P .
The explicit nature of these bases has led to consequences in geometry and representation
theory: for example, effective determinations of the singular locus of Schubert varieties, and
generalisations of the Littlewood-Richardson rule [92, Chapter 13]. In addition, Gonciulea-
Lakshmibai [54] use the standard monomial basis to construct toric degenerations of G/B
and Schubert varieties in miniscule G/P .

For G an arbitrary connected semisimple, simply-connected complex algebraic group, a
generalisation was given by Caldero [24] who, for every reduced expression i of the longest
element w0 of the Weyl group of G, obtained toric degenerations for all Schubert varieties in
G/B. The key tool used by Caldero is the specialisation at q = 1 of (the dual of) Lusztig’s
canonical basis [99] for the upper/lower part of the quantised universal enveloping algebra
Uq(g) associated to the Lie algebra g of G. A key feature of his work is the construction of
a lattice-semigroup whose points parameterise bases of representations of G, the string cone
lattice semigroup, and a lattice-semigroup parameterising a weight basis of the coordinate
ring of the base affine space known as the extended string cone. Alexeev-Brion [1] later
determine conditions for the central toric fibre of Caldero’s degeneration to be Gorenstein
Fano, with a view to obtaining a mirror family construction similar to BCKS.

Rietsch [115] describes a Lie-theoretic construction of a mirror family (M t
P , f

t
P , ωt) to

the flag variety G/P . Here G is connected semisimple, simply-connected complex algebraic
group, P ⊆ G a parabolic subgroup; fix a maximal torus T ⊆ G. The remarkable feature
is that the family MP is a subvariety of a Borel containing the dual torus LT inside the
Langlands dual LG, with base Z(LLP ) being the centre of a Levi subgroup LLP ⊆ LP inside
the dual LP of P . Building on the unpublished work of Dale Peterson, Rietsch gives an
isomorphism

qH∗(G/P ) ∼= Jac(fP ),

and an extension to the T -equivariant setting. Specific (T -equivariant) mirror conjectures
for G/P are stated, extending the previously formulated conjectures of Givental and BCKS
in type A.

The T -equivariant Rietsch mirror conjectures are verified for complete flag varieties G/B
by Lam [93] (see earlier work of Rietsch [116] for the non-equivariant case) and, recently,
for miniscule flag varieties G/P by Lam-Templier [94]. An essential feature of these works
is Berenstein-Kazdan’s notion of geometric crystal [12], [13]. Incredibly, the mirror family
(MP , fP , ωt) proposed by Rietsch is exactly equal to the decorated geometric crystals studied
by Berenstein-Kazhdan; moreover, it appears that the introduction of this central object was
unbeknownest to either author(s). Originally introduced as a tool to understand W -invariant
γ-functions appearing in the local Langlands program [20], geometric crystals associated to
G are birational models of the Kashiwara crystals [77] associated to the Langlands dual LG.
Kashiwara crystals are combinatorial models of Kashwiara’s crystal bases [76], which are
specialisations of Lusztig’s canonical base at q = 0. The recovery of the Kashiwara crystal
from the geometric crystal is via the process of tropicalisation.
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Homological mirror symmetry

There have been proposed two intrinsic approaches to mirror symmetry: Kontsevich’s pro-
gram of homological mirror symmetry and the geometric approach proposed by Strominger-
Yau-Zaslow (known as the SYZ conjecture).

At his 1994 ICM address, Kontsevich proposed the following conjecture:

Conjecture (Homological Mirror Symmetry Conjecture [88]). For a mirror pair of Calabi-
Yau manifolds (X,M), (some enhanced version of) the Fukaya category F(X) of X [40, 41]
is equivalent to the derived category of coherent sheaves on M . The same statement holds
with the roles of X and M swapped.

Kontsevich’s program of homological mirror symmetry (HMS) highlights a profound con-
nection between the symplectic geometry of a Calabi-Yau manifold X and the complex geom-
etry of its mirror M . A consequence of the homological mirror symmetry conjecture would
be the Givental-BCKS-Rietsch mirror conjectures relating quantum cohomology D-modules
with oscillatory integrals and identifications of quantum cohomology with Jacobian rings of
superpotentials. In particular, obtaining an identification of quantum cohomology with the
Jacobian ring of the superpotential for the mirror provides a first order approximation to
any conjecture in homological mirror symmetry.

In his 2014 ICM address, Teleman [125] described a conjectural mirror construction for
symplectic reductions M �G, with G a compact, connected Lie group and M a compact
Hamiltonian G-space. This construction is a consequence of a new program of topological
actions of G on Fukaya categories arising from Hamiltonian G-spaces and gauging topological
quantum field theories. When M = G/L is a coadjoint orbit considered as a Hamiltonian
T -space, for T ⊆ G a maximal torus, Teleman conjectured the following:

Conjecture A (Teleman, [125]). Let ν be a regular value of the moment map µ : G/L→ t∗

for the Hamiltonian T -action. Let t ∈ Z(LLC) denote the symplectic structure on G/L.
Then, the Fukaya category of the symplectic reduction (G/L)� T (ν) can be computed as
the category Hom(Sν ,Λ(t)), where Sν is the cotangent fibre over exp(ν) considered as an
element in LT by duality.

Identify G/L with GC/P , for some parabolic subgroup of the complexification GC of G.
Let (MP , fP ) be the mirror family introduced by Rietsch. Then, MP is a subgroup of a
Borel containing the dual torus LTC inside the Langlands dual LGC. A first approximation
to the veracity of Teleman’s conjecture would be the following consequence for quantum
cohomology:

Conjecture B (Teleman, [125]). Let ν be a regular value of the moment map µ : G/L→ t∗

for the Hamiltonian T -action. Let t ∈ Z(LLC) denote the symplectic structure on G/L.
Then, the quantum cohomology of the symplectic reduction (G/L)� T (ν) can be computed
as the Jacobian ring of the restriction of the T -equivariant superpotential to a generic fibre
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of the canonical quotient homomorphism e : MP → LTC. The quantum structure comes
from the variation of t ∈ Z(LLC).

Moreover, if G has nontrivial (finite) centre Z, then the number of critical points appears
with multiplicity |Z|.

Let G be a compact, connected Lie group, T ⊆ G a maximal torus. The symplectic
reductions of coadjoint orbits (with respect to the Hamiltonian T -action) are known as
weight varieties and were initially studied in [86]. Weight varieties should be considered
as geometric analogues of weight spaces of irreducible representations. Indeed, if λ is a
dominant weight and (G/T,Lλ) is the complete flag variety together with a polarisation
Lλ such that H0(G/T,Lλ) ∼= V (λ)∗, the unique irreducible representation of G having
lowest weight −λ, then the weight variety (G/T )� T (ν) inherits a polarisation Lλ,ν and
dimH0((G/T )� T (ν),Lλ,ν) = dimV (λ)∗ν , where V (λ)∗ν is the ν-weight space of V (λ)∗.

The (co)homology of weight varieties has been investigated and computed by several
authors ([64],[37], [51], [53],[52]). For certain weight varieties that can be explicitly identi-
fied, the quantum cohomology has been computed (for example [31]). However, a general
framework for computations of the quantum cohomology of weight varieties (in the spirit of
Rietsch, say) have yet to be obtained. One aim of this thesis is to develop an approach to
address this problem.

An important class of weight varieties are quotients of GrC(2, n). These symplectic
reductions have a moduli intepretation as the moduli of spatial n-gons with fixed side-lengths
r ∈ Rn

>0, called polygon spaces Pr,n. Polygon spaces are related to the moduli space M0,n of
stable n-pointed rational curves ([81], [37], [85]) and the moduli space of flat connections on
a punctured sphere [86]. Examples of polygon spaces include Pn−3

C , (P1
C)n−3 and blow-ups of

P2
C at 0, 1, 2, 3, 4 points [38].

SYZ conjecture

In [123], Strominger-Yau-Zaslow interpret mirror symmetry in terms of T -duality in string
theory.

Conjecture (SYZ Conjecture [123]). If X and M are mirror pairs of Calabi-Yau n-folds,
then there exist fibrations g : X → B and g′ : M → B, whose fibres are special Lagrangian,
with general fibre an n-torus. Furthermore, these fibrations are dual in the sense that,
canonically, Xb

∼= H1(Mb,R/Z) and Mb
∼= H1(Xb,R/Z), whenever the fibres Xb and Mb are

non-singular tori.

The SYZ conjecture proposes an approach for a geometric construction of the mirror of a
Calabi-Yau manifold X: once a Lagrangian torus fibration X → B of X has been obtained,
attempt to build M by dualising the toric fibres [57], [67]. In the Fano setting, Auroux [4]
extended the SYZ-conjecture:
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Conjecture ([4, Conjecture 1.1 ]). Let X be a compact Kähler manifold, D ⊆ X an
anticanonical divisor, Ω a holomorphic volume form defined over X \ D. Then, the mirror
LG-model (M, f) can be constructed as a moduli space of special Lagrangian tori in X \D
equipped with flat U(1)-connections, with superpotential f : M → C given by Fukaya-Oh-
Ohta-Ono’s m0 obstruction to Floer homology [39].

One method of constructing Lagrangian torus fibration of a variety X is via integrable
systems on (a dense subset of) X. The notion of a toric degeneration of an integrable
system on a projective manifold was introduced by Nishinou-Nohara-Ueda [112] (see also
[62]): roughly, this is a toric degeneration of X such that the integrable can be transported
to an integrable system on the toric limit. If the toric limit is Fano and admits a small
resolution then the authors compute Floer-theoretic potential functions for X, using deep
results of [39].

By degenerating the Gelfand-Tsetlin integrable system [61] on the complete flag variety
SLn+1(C)/B and making explicit computations of holomorphic disks, Nishinou-Nohara-Ueda
compute the potential function. In this way, they recover the superpotential introduced by
Givental using the Gelfand-Tsetlin quiver.

In later work, Nohara-Ueda [113] construct a family of integrable systems ΨΓ on GrC(2, n)
parameterised by triangulations Γ of a fixed convex planar n-gon Π (the reference polygon).
For any triangulation Γ of Π, the integrable system ΨΓ admits a toric degeneration (originally
determined in [121]) and, if the Kahler structure on GrC(2, n) represents the first Chern class,
then the toric limit of ΨΓ is Gorenstein Fano and admits a small resolution. This allows
them to compute the potential function associated to GrC(2, n). Moreover, for a certain
triangulation they recover the superpotential constructed by physical considerations in [35].

The integrable system ΨΓ is invariant with respect to the natural torus action on GrC(2, n)
and induces an integrable system ΦΓ on the polygon spaces Pr,n. Moreover, the toric degen-
erations of ΨΓ induces a toric degeneration of ΦΓ. The moment polytope of the central limit
of ΦΓ is realised as the intersection of the moment polytope of ΨΓ with an affine subspace.

Thesis results

This thesis is comprised of two parts.
In the first part, we develop a new approach to computing the quantum cohomology

rings of symplectic reductions of partial flag varieties X, also known as weight varieties.
Motivated by a conjecture of Teleman [125], we use a mirror family (Mp, fP ) of X introduced
by Rietsch [115] to give a conjectural explicit presentation of the quantum cohomology of
weight varieties. We determine explicit expressions for the superpotential fP with respect
to a family of parameterisations of MP , originally studied by Lusztig, Fomin-Zelevinsky in
the context of total positivity of reductive groups.

In order to test our conjectural description, we specialise our focus to the class of polygon
spaces Pr,n in type A. The polygon space Pr,n is a symplectic quotient of the Grassmannian
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of 2-planes in Cn, and has a modul interpretation as the moduli space of spatial n-gons with
fixed consecutive side length given by r ∈ Rn

>0.
Polygon spaces of low dimension have been classified: the moduli space of 4-gons Pr,4 is

diffeomorphic to P1
C (independent of r); the moduli space of 5-gons Pr,5 is a rational surface

diffeomorphic to either P1
C × P1

C, P2
C or the Del Pezzo surface obtained by blowing up P2

C at
1, 2, 3, 4 points.

We obtain the following results.

Theorem 3.4.15. Let X = GrC(2, 4) = SL4(C)/P be the complex Grassmannian of 2-
planes, (MP , FP ) the Rietsch mirror family. Let e : MP → LT be the equivariant structure
map. Let Pr,4, r ∈ Z4

>0, be the space of 4-gons realised as the symplectic reduction of
X. Then, the quantum cohomology of Pr,4 can be computed as the Jacobian ring of the
restriction of fP to a generic fibre of e.

Theorem 3.4.16. Let X = GrC(2, 5) = SL4(C)/P be the complex Grassmannian of 2-
planes, (MP , FP ) the Rietsch mirror family. Let e : MP → LT be the equivariant structure
map. Let Pr,5, r ∈ Z4

>0, be the space of 4-gons realised as the symplectic reduction of X. Let
r ∈ {(1, 1, 1, 1, 2), (1, 2, 2, 3)}. Then, for the quantum cohomology of Pr,5 can be computed
as the Jacobian ring of the restriction of fP to a generic fibre of e.

In the second part of this thesis, we investigate the appearance of combinatorial structures
in representation theory, known as Kashiwara crystals, in the mirror symmetry of partial
flag varieties. We show that, on the B-model side of mirror symmetry for the complete
flag variety, the extended string cone introduced by Caldero to define a family of toric
degenerations on the A-model side, and later used by Alexeev-Brion [1] in the context of
mirror symmetry, can be recovered via a discretisation process known as tropicalisation.
Specifically, using a non-standard parameterisation of MP we explicitly recover the extended
string cone via tropicalisation.

Theorem 4.4.5. Let G be a reductive complex algebraic group, B ⊆ G a Borel subgroup.
Let (MB, fB) be the Rietsch mirror family to LG/LB. Then, for every i, a reduced expression
of the longest element w0 of the Weyl group of G, there exists a parameterisation ji of a dense
open subset of MP with respect to which the tropical locus {Trop(fB) ≥ 0} is precisely the
extended string cone C i. Moreover, the λ-inequalities defining C i are explicitly recovered.

We conclude with an observation on how crystal structure on the B-model side controls
aspects of integrable systems appearing on the A-model side.
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1.2 Outline

The structure of this thesis is as follows: in Chapter 2 we introduce the background required
from symplectic geometry. In Section 2.1 we discuss the general setting of Hamiltonian
G-spaces, for G a compact, connected Lie group, and introduce the moment map. For
Hamiltonian T -spaces, with T a compact torus, we see that the moment polytope admits
internal structure, decomposing into chambers and walls. In Section 2.2 we introduce, follow-
ing Marsden-Weinstein-Meyer, the symplectic reduction of a Hamiltonian G-space. In this
section we describe the important example of polygon spaces Pr,n. In Section 2.3 we discuss
the symplectic geometry of coadjoint orbits and show that they are Hamiltion T -spaces for
the coadjoint action of T . We describe the wall structure on their moment polytopes in terms
of root-theoretic data. In Section 2.4 we provide some examples of the symplectic reduction
of coadjoint orbits (so-called weight varieties). We finish the chapter with a brief discussion
on the well-known connection between the symplectic reduction and GIT quotients.

In Chapter 3 we develop a new approach to computing the quantum cohomology of weight
varieties. In Section 3.1 we introduce the Landau-Ginzburg model (MP , fP ) first proposed
by Rietsch, and discuss its connection to computing (T -equivariant) quantum cohomology
of partial flag varieties. In Section 3.2 we present Teleman’s conjectural mirror construction
for the quantum cohomology of weight varieties. Our conjectural description of the quan-
tum cohomology of weight varieties is given in Conjecture 3.2.7. In Section 3.3 we obtain
explicit expressions for the superpotential fP , which will be essential in verifying Conjecture
3.2.7. Section 3.4 specialises to the type A setting and we make new quantum cohomology
computations for polygon spaces Pr,n of low rank, thereby verifying Conjecture 3.2.7 in this
setting. We conclude this chapter with an outline of future directions of research.

Chapter 4 is an investigation into the appearance of representation-theoretic structures in
the mirror symmetry for partial flag varieties. In Section 4.1, we recall background from the
theory of quantised universal enveloping algebras. Section 4.2 introduces Lusztig’s canonical
basis B and its consequences for representation theory. In particular, we give a brief account
of the role of B in determining combinatorial tensor product multiplicity formulae. We define
several parameterisations of B including the the family of string parameterisations due to
Littelmann. We conclude this section by introducing the extended string cone C i and the
λ-inequalities that define it. In Section 4.3, we give a brief account of Kashiwara’s theory of
crystals and their geometric counterparts developed by Berenstein-Kazhdan. In this section
we develop the tool of tropicalisation, realised as a functor from a certain class of varieties to
Set. Section 4.4 introduces a non-standard parameterisation of the Rietsch mirror (MB, fB),
and we state and prove our main result Theorem 4.4.5. We conclude with a discussion
illuminating intriguing similarities between the hierarchy of a family of integrable systems
on the A-model side (introduced in [113]) and the crystal structure obtained in Theorem
4.4.5 (on the B-model side).
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1.3 Notation

In this preliminary section we introduce the conventions and definitions we adopt throughout
this thesis.

Let P be a monoid, A some nonempty set. We write PA for the P-span of A (i.e. the
free P-module generated by A if A is not a subset of some P-module). If G is a group then
Z(G) will denote the centre of G.

We introduce our conventions for Lie theoretic objects, for further details see [122]. Let G
be a complex reductive algebraic group; unless otherwise stated G will be assumed connected.
We fix a choice of maximal torus T ⊆ G, a Borel subgroup B+ ⊆ G containing T , and
opposite Borel subgroup B− so that B− ∩ B+ = T . We write N± for the unipotent radical
of B±. A parabolic subgroup P ⊆ G admits a Levi decomposition P = LPNP , where NP is
the unipotent radical, LP is reductive and NP ∩ LP = {e}. We write g, t, b±, n±, p for the
corresponding Lie algebras. We denote the Weyl group W = NG(T )/T . For w ∈ W , t ∈ T ,
we will sometimes write tw = wtw−1.

The above choices are uniquely determined (up to isomorphism) by the root datum
Ψ(G) = (X,R,X∨, R∨) associated to the pair (G, T ). Here

X := Hom(T,Gm), X∨ := Hom(Gm, T )

and R ⊆ X is the set of roots relative to T ; R∨ ⊆ X∨ is the corresponding set of coroots.
We will interchangeably refer to elements of X (resp. X∨) as weights or characters (resp.
coweights or cocharacters). There is a canonical pairing between X and X∨

〈, 〉 : X ×X∨ −−−→ Z
(λ, µ∨) 7−−−→ 〈λ, µ∨〉

defined by (λ◦µ∨)(z) = z〈λ,µ
∨〉. With respect to this pairing there are canonical identifications

X ∼= Hom(X∨,Z), X∨ ∼= Hom(X,Z).

Denote the root lattice Q := ZR, and the coroot lattice Q∨ := ZR∨. We define the lattice of
integral weights Π ⊆ XQ := Q⊗X to be the lattice

Π = {λ ∈ XQ | 〈λ, α∨〉 ∈ Z, α∨ ∈ R∨}.

We write w(λ), or simply wλ, (resp. w(λ∨)) for the action of w ∈ W on λ ∈ X (resp.
λ∨ ∈ X∨); this descends to an action on Q (resp. Q∨) preserving R (resp. R∨).

The choice of Borel B+ induces a choice of positive roots R+ ⊆ R and simple roots
S ⊆ R+. We write S∨ ⊆ X∨ for the simple coroots. We write Q≥0 := Z≥0R

+ = Z≥0S, and
Q≤ := Z≥0R

− = −Z≥0S, with analogous definitions for Q∨≥0, Q∨≤0. The monoid of dominant
weights is

X+ := {λ ∈ X | 〈λ, α∨〉 ≥ 0, α∨ ∈ S∨},
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with an analogous definition for the monoid of dominant coweights X∨+. A weight λ ∈ X
is antidominant if w0(λ) ∈ X+ (see below for the definition of w0); there is an analogous
definition of antidominant coweight. We denote the monoid of dominant weights (resp.
dominant coweights) X− (resp. X∨−).

If G is a reductive complex algebraic group with root datum (X,R,X∨, R∨), then we call
(Π, S,Π∨, S∨) the associated Cartan datum.

There is a partial ordering on X (resp. X∨) defined as follows:

λ ≥ µ (resp. λ∨ ≥ µ∨) ⇐=⇒ λ− µ ∈ Q+ (resp. λ∨ − µ∨ ∈ Q∨+).

There is a unique identification
S ←−→ S∨

α ←−→ α∨

such that 〈α, α∨〉 = 2. Using this identification we index both S and S∨ by the same set I,
so that S = {αi}i∈I and S∨ = {α∨i }i∈I , where α∨i = (αi)

∨. Define the fundamental weights
$i ∈ Π, i ∈ I, to be the weights such that 〈$i, α

∨
j 〉 = δij, for i, j ∈ I.

There is an involution i 7→ i∗ on I, where −w0(αi) = αi∗ , for i ∈ I (see below for
definition of w0). This is equivalent to w0siw0 = si∗ .

For α ∈ R+, we make a choice of corresponding root subgroup homomorphism

xα : A1 −−−→ N+

satisfying
txα(c) = xα(α(t)c)t, t ∈ T.

We write xi := xαi and yi := x−αi , for i ∈ I. If we totally order R+ = {β1, . . . , βm} then there
is an isomorphism of varieties

∏m
j=1 xβi : Am → N+. It is well-known that G is generated by

T and im xα, α ∈ S ∪ −S.
If P ⊇ B+ then there is a unique subset J = J(P ) ⊆ I such that P is generated by B+

and im yj, j ∈ J . We write P = PJ if we want to make J explicit; P is called a standard
parabolic subgroup. The Levi subgroup LP is generated by T and imxj, im yj, j ∈ J . We
write WP for the Weyl group of the pair (LP , T ). If P = PJ then WP is identified with the
subgroup of W generated by sj, j ∈ J . Write W P ⊆ W for the set of minimal length coset
representatives of W/WP . The centre Z(LP ) is a subgroup of T equal to TWP , the elements
in T fixed by WP

The Weyl group W is generated by reflections si, i ∈ I, subject to the standard Coxeter
relations

s2
i = 1, (sisj)

mij = 1,

where mij = 2, 3, 4 or 6 whenever, respectively, 〈αi, α∨j 〉 = 0, 1, 2, 3. The latter relations
are called the braid relations. If w = si1 · · · sir , with r minimal, then we define `(w) = r,
the length of w. For such a presentation of w we call the sequence (i1, . . . , ir) a reduced
expression of w. The set of all reduced expressions of w will be denoted R(w). There is a
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unique element w0 ∈ W , with w2
0 = e ∈ W , having maximal length `(w0) = dimN+ = |R+|.

We write WP for the Weyl group of the pair (LP , T ). If P = PJ then WP is identified with
the subgroup of W generated by sj, j ∈ J . Let wP0 ∈ WP be the longest element. Define
w−1
P ∈ W to be the longest element of W P .

A result of Matsumoto, Tits (see [18]) shows that any two reduced expressions are related
by braid relations. Define

si := xi(−1)yi(1)xi(−1), i ∈ I.

Then, si ∈ NG(T ) and is a representative of si ∈ W . The si, i ∈ I, satisfy the braid relations
so that the element

w = si1 · · · sir ∈ NG(T ),

where (i1, . . . , ir) ∈ R(w), is a well-defined representative of w ∈ W . In particular, if
u, v ∈ W and w = uv, with `(w) = `(u) + `(v), then w = uv. In general, the si do not
satisfy s2

i = 1 ∈ G, although we have s2
i = α∨i (−1). For the longest element w0 ∈ W ,

w0B±w
−1
0 = B∓: in particular, w0N±w

−1
0 = N∓.

We will use the following involutive antiautomorphisms of G

(i) the transpose g 7→ gT , determined by

xi(a)T = yi(a), yi(a)T = xi(a), tT = t, i ∈ I, t ∈ T ; (1.3.1)

(ii) the positive inverse g 7→ gι, determined by

xi(a)ι = xi(a), yi(a)ι = yi(a), tι = t−1, i ∈ I, t ∈ T. (1.3.2)

These antiautomorphisms commute with each other and with the involutive antiautomor-
phism g 7→ g−1 of G. We have

wT = w−1, and wι = w−1.

For any g = utv ∈ G0 = N−TN+ admitting Gauss decomposition, we define

π−(g) = u, π0(g) = t, π+(g) = v, π≤0(g) = ut, π≥0(g) = tv. (1.3.3)

Following [15, Section 6], we define the generalised minors ∆uµ,vµ, µ ∈ X+, u, v ∈ W , to
be the regular functions on G whose restriction to uG0v

−1 is given by

∆uµ,vµ(g) := µ(π0(u−1gv)).

When G is type A, so that W is identified with a group of permutations, the generalised
minor ∆u$i,v$i is the matrix minor with row set I = {u(1), . . . , u(i)} and column set J =
{v(1), . . . , v(i)}.

If G is a reductive complex algebraic group with root datum (X,R,X∨, R∨) then the
Langlands dual group LG is the reductive complex algebraic group with dual root datum
(X∨, R∨, X,R). When referring to subgroups of the Langlands dual we will write LT , LB±,
LN± etc. We will also write X(LT ) when referring to the weight lattice of the pair (LG, LT ),
with similar notation for the other objects defined above.
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Chapter 2

Symplectic geometry of coadjoint
orbits

In this chapter we introduce the necessary background from symplectic geometry and Hamil-
tonian actions of compact Lie groups. In Section 2.1 we introduce Hamiltonian G-spaces,
where G is a compact, connected Lie group. We introduce the additional data of the mo-
ment map and describe how the moment polytope admits a chamber structure. In Section
2.2 we recall the notion of symplectic reduction and indicate the construction of the modul
space of spatial polygons. We also present the construction of the complex Grassmannian
of 2-planes GrC(2, n) via symplectic reduction. In Section 2.3 we consider in more detail a
special case of Hamiltonian G-spaces, namely, the coadjoint orbits of G. We show that the
chamber structure of the moment polytope can be obtained from the structure of the Weyl
group and root system in g. Section 2.4 introduces the class of weight varieties: these are
those symplectic manifolds that can be realised as reductions of coadjoint orbits. We close
this section with an analysis of the chamber structure for the GrC(2, n). Finally, in Section
2.5 we briefly discuss the relationship between symplectic reduction and GIT quotients in
algebraic geometry, focusing mainly on the case of coadjoint orbits.

Most of the material in this chapter is standard and can be found in any graduate
textbook on symplectic geometry, for example [3],[107]. The material concerning reduction
of coadjoint orbits and the wall structure of moment polytopes can be found in [86], or [58].

2.1 Hamiltonian G-spaces

Let G be a compact, connected Lie group, (M,ω) a symplectic manifold. We are interested
in symplectic (left) actions of G on M ,

a : G −−−→ Symp(M,ω)

g 7−−−→ ag

where Symp(M,ω) is the group of symplectomorphisms of (M,ω).
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Remark 2.1.1. We will write g ·m := ag(m), g ∈ G, m ∈ M , whenever a group G acts on
a set M .

For each X ∈ g, we let X denote the infinitesimal action of X on M induced by a. This
is the (unique) vector field on M with flow {aexp(−tX)}t∈R. Explicitly, for each m ∈ M , we
consider the orbit map

σm : G −−−→ M

g 7−−−→ g ·m

Then, Xm := (dσm)e(−X) ∈ TmM .

Remark 2.1.2.

1) The sign appearing in the definition of X ensures that [X, Y ] = [X, Y ].

2) We will refer to the vector field X, X ∈ g, as a fundamental vector field.

For any m ∈M , the tangent space at m to the orbit G ·m is spanned by the fundamental
vector fields

Tm(G ·m) = {Xm | X ∈ g}

Definition 2.1.3. The action a : G → Symp(M,ω) is Hamiltonian if, for every X ∈ g,
there exists a function

µ : M −→ g∗,

such that

1) for each X ∈ g, the function

µX : M −−−→ R
m 7−−−→ 〈µ(m), X〉

is a Hamiltonian function for the fundamental vector field X, so that

dµX = iXω.

2) µ is equivariant: for every g ∈ G, we have

µ ◦ ag = Ad∗(g) ◦ µ

Here Ad∗ : G→ GL(g∗) is the coadjoint action of G on g∗.

We call the datum (M,ω, a, µ) a Hamiltonian G-space, and µ is the moment map.

Remark 2.1.4. We will refer to a Hamiltonian G-space (M,ω, a, µ) as (M,ω), the extra
data of the action and choice of a moment map being implicit.
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If µ is the moment map for a Hamiltonian G-space then, for X ∈ g, we have

µX = HX ◦ µ,

where HX : g∗ → R is the linear ‘evaluation at X’ map. Infinitesimally, we obtain

iXω = dµX = HX ◦ dµ =⇒ ωm(Xm, V ) = 〈dµm(V ), X〉, V ∈ TmM. (2.1.1)

Hence, ker dµm is the ω-complement of Tm(G ·m), and the annihilator of im dµm ⊆ g∗ is

(im dµm)◦ = {X ∈ g | Xm = 0},

which can be identified with the Lie algebra of the stabiliser Gm = {g ∈ G | ag(m) = m}.

Lemma 2.1.5. dµm is surjective if and only if the stabiliser Gm is discrete (hence, finite).
In particular, m ∈M is a critical point of µ if and only if dimGm ≥ 1.

Let H ⊆ G be a subgroup, and denote (H) be the type of H: (H) is the set of subgroups
of G that are conjugate to H. The orbit-type stratification of M is the partition of M into
subsets

M(H) = {m ∈M | Gm ∈ (H)},

where H ⊆ G is a subgroup. By the equivariant Darboux theorem [60], each subset M(H) is a
union of G-invariant symplectic submanifolds of M (not necessarily of the same dimension).
Moreover, M(H) is a Hamiltonian G-space with moment map µ|M(H)

.

Remark 2.1.6. An example when the connected components have different dimensions is
easily seen: consider the action of S1 on M = CP 2, where eit · [t · z0 : z1 : z2], eit ∈ S1, then
the fixed point set is M(S1) consists of the point [1 : 0 : 0] and the line at infinity [0 : z1 : z2].

If G is commutative then (H) = {H}, and M partitions into a union of G-invariant
submanifolds

M =
⋃
H⊆G

Fix(H), (2.1.2)

where
Fix(H) = {m ∈M | h ·m = m, for every h ∈ H}.

When M is compact the union in (2.1.2) is finite [3, Ch. 2]. Hence, by Lemma 2.1.5 we
obtain the following result.

Proposition 2.1.7. Let G be a commutative compact, connected Lie group, and (M,ω) be
a Hamiltonian G-space, with µ the corresponding moment map. The collection of critical
points of µ is a union of Hamiltonian G-spaces of the form Fix(H), for H ⊆ G a positive
dimensional stabiliser of some point: if M is compact then this union is finite. The critical
values of µ are the images of these submanifolds.
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Remark 2.1.8. For the remainder of this section we assume that G = T is a torus.

Let (M,ω) be a Hamiltonian T -space with moment map µ.

Theorem 2.1.9 (Atiyah, Guillemin-Sternberg [2, 59]). Let (M,ω) be a Hamiltonian T -space
with moment map µ : M → t∗. Assume that M is compact. Then, the set of fixed points
of the action is a finite union of connected symplectic submanifolds C1, . . . , CN . Moreover,
µ is constant on each of these components, µ(Ci) = ξi ∈ t∗, and µ(M) is the convex hull of
ξ1, . . . , ξN ,

µ(M) =

{
N∑
i=1

ciξi

∣∣∣∣∣
N∑
i=1

ci = 1, cj ≥ 0

}
⊆ t∗

Definition 2.1.10. The moment polytope associated to a Hamiltonian T -space (M,ω) with
moment map µ is the polytope µ(M) ⊆ t∗.

Remark 2.1.11. For a Hamiltonian T -space (M,ω) with moment map µ we will write
∆M := µ(M) for its moment polytope, or simply ∆ if there is no risk of confusion.

Let F1, . . . , Fr be the closures of the connected components X1, . . . , Xr of the orbit-type
strata from Proposition 2.1.7 with corresponding stabiliser subgroups T1, . . . , Tr ⊆ T . Each
Fj is a connected component of Fix(Tj), where Tj is the stabiliser of a generic point in Fj,
and Fj is a Hamiltonian T -space with moment map µ|Fj .

Set Hj = T/Tj. The T -action has kernel Tj and Fj inherits an effective Hamiltonian
Hj-action. The moment map µj : Fj → h∗j for this action is unique up to a constant, which
we now specify.

For any m ∈ Fj, (2.1.1) shows that im
(
dµ|Fj

)
m

is the annihilator of tj inside t∗, so that

im
(
dµ|Fj

)
m

= h∗j . In particular, µ(Fj) is some translate of h∗j inside t∗. For example, if
mj ∈ Fj as a fixed point for the T -action then µ(Fj) ⊆ µ(mj) + h∗j . Hence, a moment map
µj for the Hj-action on Fj can be specified by requiring that µ(Fj) lands in h∗j .

Remark 2.1.12. Applying Theorem 2.1.9 we obtain µ(Fj) is a convex polytope, for each j.
By the above discussion, this convex polytope is a subset of the intersection ∆M ∩ (ξj + h∗j),
where ξj is the image of some fixed point in Fj. Furthermore, if Fi ⊆ Fj then µ(Fi) ⊆ µ(Fj).

Definition 2.1.13. A codimension-k wall in ∆M (or simply, a wall in ∆M) is the image of
some Fj in ∆M , where dimTj = k. We denote the set of all walls by F .

A wall is proper if it has positive codimension.
An internal wall is a proper wall containing a point in the interior of ∆M . An external

wall is any proper wall that is not internal.

Definition 2.1.14. A chamber is a connected component of the set

∆◦M := ∆M \
⋃
d∈F

d proper

d (2.1.3)
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Remark 2.1.15. By Proposition 2.1.7, ∆◦M is precisely the set of regular values of µ. More-
over, ∆ decomposes into a union of polytopes: the interior of each polytope corresponds to
a unique chamber.

2.2 Symplectic reduction

Let G be a compact Lie group (not necessarily a torus) and (M,ω) a Hamiltonian G-space
with moment map µ : M → g∗. Let λ ∈ ∆M . By equivariance of the moment map, the level
set µ−1(λ) is Gλ-invariant, where Gλ is the stabiliser of λ under the coadjoint action of G on
g∗. If λ is a regular value then the action of Gλ is locally free and the quotient µ−1(λ)/Gλ

admits, at worst, orbifold singularities.
Consider the diagram:

µ−1(λ) M

µ−1(λ)/Gλ

pλ

iλ

Whenever the action on µ−1(λ) is free, the quotient Mλ admits a canonical manifold
structure, and the quotient map pλ is a principal Gλ-bundle.

Theorem 2.2.1 (Marsden-Weinstein [104], Meyer [109]). Let G be a compact Lie group and
(M,ω) be a Hamiltonian G-space with moment map µ. Assume that λ ∈ g∗ is a regular
value of µ. Then, the topological quotient µ−1(λ)/Gλ is a symplectic orbifold of dimension
dimM − 2 dimGλ, and there exists a unique symplectic form ωred on µ−1(λ)/Gλ such that

p∗λω
red = i∗λω

In particular, whenever G acts freely on µ−1(0), the quotient µ−1(0)/G inherits the struc-
ture of a symplectic manifold.

Definition 2.2.2. The symplectic orbifold (µ−1(λ), ωred) is the symplectic reduction of M
by Gλ at λ, and will be denoted M�Gλ(λ).

We will need the following result.

Proposition 2.2.3 (Reduction in stages). Let G = H×K be a compact, connected Lie group
and (M,ω) be a Hamiltonian G-space with moment map µ. Let µH and µK be the moment
maps of the induced actions of H and K on M . Then, µ can be canonically identified with
µH × µK. For any regular value ν = (α, β) ∈ g∗ = h∗ × k∗ so that α is a regular value of µH
and β is a regular value of µK, the symplectic reduction µ−1(ν)/G is symplectomorphic to the
symplectic reduction of the Hamiltonian K-space µ−1

H (α)/H at β. An analogous statement
holds with the roles of H and K reversed.
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We finish this section with some examples of symplectic reduction that we will return to
in Section 2.5.

Example 2.2.4. Let (S2, ω) be the 2-sphere with its standard SO(3)-invariant symplectic
form ω so that

∫
S2 ω = 4π. Let n ≥ 3 and fix r = (r1, . . . , rn) ∈ Rn

>0, a sequence of positive
real numbers. The product manifold (S2)n is given the symplectic form Ωr =

∑n
i=1 riωi,

where ωi is the pull-back of ω along the jth projection. Points in (S2)n can be identified
with polygonal paths in R3 having consecutive edge-lengths r1, . . . , rn. The natural action
of SO(3) provides a diagonal action on ((S2)n,Ωr) with moment map

µr,n : (S2)n −−−→ so(3)∗ ∼= R3

(a1, . . . , an) 7−−−→
∑n

i=1 riai

The set µ−1
r,n(0) can be identified with polygons in R3 having consecutive side-lengths r1, . . . , rn.

The critical points of µr,n are the degenerate polygons: these are those polygons P lying
completely in a line. In particular, whenever n is odd, there are no degenerate polygons in
µ−1
r,n(0).

When n is odd, Theorem 2.2.1 implies that the symplectic reduction is a smooth (2n−6)-
dimensional symplectic manifold.

Definition 2.2.5. The symplectic reduction of (S2)n by SO(3) at 0 is called the moduli
space of spatial n-gons Pr,n or, simply, a polygon space.

Polygon spaces have been studied intensively over the past couple of decades and have
connections with the moduli space M0,n of stable n-pointed rational curves ([81], [37], [85])
and the moduli space of flat connections on a punctured sphere [86]. We record the following
examples of polygon spaces.

Example 2.2.6. (i) The simplest case when n = 3 is trivial as there is exactly one 3-gon
in R3 with prescribed side-lengths, up to SO(3)-invariance. Hence, Pr,n is a point.

(ii) Let n = 4. In this case Pr,n is a 2-dimensional symplectic manifold diffeomorphic to
S2 (i.e. independent of r).

(iii) Let n = 5. Then, Pr,n is either S2 × S2 or a blow-up of P2
C at 0, 1, 2, 3, 4 points [37].

(iv) When r = (1, 1 . . . , 1, n, n, n), Pr,n is identified with (P1
C)n−3. This can be seen by the

following argument: consider Pr,n to be the moduli space of weighted configurations
of points in P1

C [33]. Let z1, . . . , zn be such a configuration all lying in the same affine
chart, which we take to be P1

C \ {∞}. Consider the cross-ratios

wi =
zn−2 − zn
zn − zn−1

· zi − zn−1

zn − zi
, i = 1, . . . , n− 3.
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The points zn−2, zn−1, zn never collide on the subset of semi-stable configurations im-
plying the existence of a map

Pr,n −−−→ (P1
C)n−3

This map is an isomorphism.

(v) When r = (2, 2, . . . , 2, 2n− 3), so that the polygons have one long side, Pr,n is diffeo-
morphic to Pn−3

C .

We recall the well-known construction of Grassmannians of k-planes in Cn via symplectic
reduction.

Example 2.2.7. Consider G = U(k) acting on the space of n × k complex matrices
Matn×k(C) ∼= Ckn: k ·A = Ak−1. Consider Matn×k(C) equipped with the standard symplec-
tic form on complex affine space. Then, we have

µ : Matn×k(C) −−−→ u(k)∗

A 7−−−→ µ(A) : x 7→ i
2

tr(xAx∗)

Using a U(k)-equivariant identification (via the Killing form, say), we identify u(k)∗ ∼= u(k)
and the moment map is

µ(A) =
i

2
A∗A.

The point y = i
2
Ik ∈ u(k) is fixed by the coadjoint action of U(k) on u(k) and

µ−1(y) = {A | Matn×k | A∗A = Ik}.

This is the set of unitary k-frames in Cm. Hence, the symplectic reduction µ−1(y)/U(k) is
the complex Grassmannian of k-planes in Cn.

2.3 Coadjoint orbits

Let G be a compact, connected Lie group, T ⊆ G a maximal torus, W the Weyl group for
the pair (G, T ). Denote the Lie algebra of G (resp. T ) by g (resp. t), and let g∗ (resp. t∗)
by the dual vector space.

In this section we will consider the (co)adjoint actions of G on g and g∗. For each X ∈ g,
we define the following function on g∗:

HX : g∗ −−−→ R
ξ 7−−−→ HX(ξ) = 〈ξ,X〉
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Let O ⊆ g∗ be a coadjoint orbit, and ξ ∈ O. Identify O with G/Gξ via the orbit map

σξ : G −−−→ O
g 7−−−→ g · ξ

where Gξ = {g ∈ G | g · ξ = ξ} is the stabiliser of ξ in G. With this identification, the
tangent space to O at ξ is g/gξ, where gξ is the Lie algebra of Gξ.

For the coadjoint action of G on g∗, the fundamental vector field X generated by X ∈ g
satisfies

〈Xξ, Y 〉 = 〈ξ, [X, Y ]〉, ξ ∈ g∗, Y ∈ g. (2.3.1)

In particular, for any X, Y ∈ g, we have

X(HY ) = H [X,Y ] = 〈dHY , X〉, (2.3.2)

For each ξ ∈ g∗, there is defined on g a skew-symmetric bilinear form ωξ,

ωξ(Y,X) := 〈ξ, [X, Y ]〉, X, Y ∈ g. (2.3.3)

The form ωξ descends to a nondegenerate skew-symmetric form on the quotient g/gξ: the
kernel of ωξ is precisely gξ. Hence, we obtain a nondegenerate skew-symmetric bilinear form
on the tangent space TξO, which we also denote ωξ. In this way, we obtain a nondegenerate
2-form ωO on O, known as the Kostant-Kirillov-Souriau (KKS) form [91, 120].

For X, Y ∈ g, (2.3.3) implies that ωO(X, Y ) = H [Y,X]. Fixing X ∈ g, and using (2.3.1),
we obtain, for all Y ∈ g,

〈iXωO, Y 〉 = ωO(X, Y ) = 〈dHX , Y 〉.

As the vector fields Y , for Y ∈ g, span the tangent spaces to O at each point, we have

iXωO = dHX . (2.3.4)

Applying the Lie derivative LX to dHY , for X ∈ g, this shows, together with (2.3.2),

LXdHY = dH [X,Y ] = i[X,Y ]ωO. (2.3.5)

Using the formula [LX , iY ] = i[X,Y ], and the fact that [X, Y ] = [X, Y ] (Remark 2.1.2),

LXiY ωO = i[X,Y ]ωO + iYLXωO

By (2.3.4) and (2.3.5), we obtain iYLXωO = 0, for all X, Y ∈ g. Hence, LXωO = 0, for
all X ∈ g and ωO is G-invariant.

Using Cartan’s formula, and (2.3.4), we find that, for every X ∈ g,

0 = LXωO = diXωO + iXdωO = iXdωO

Since the fundamental vector fields X, X ∈ g, span the tangent spaces to O at every point,
ωO is closed.

In summary,
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Proposition 2.3.1 ([91, 120]). Let O ⊆ g∗ be a coadjoint orbit. Then, there exists a G-
invariant symplectic form ωO on O, the Kirillov-Kostant-Siourau form. The coadjoint action
is Hamiltonian with moment map being the canonical inclusion

µO : O ↪−−−→ g∗

so that the fundamental vector fields X, for X ∈ g, admit Hamiltonian functions HX .

Restricting the action of G to T , a coadjoint orbit (equipped with its KKS symplectic
structure) is a Hamiltonian T -space. A moment map for the action is the composition

O
µO

↪−−−→ g∗ −−−→ t∗, (2.3.6)

where the second map is the canonical projection, which we will also denote µO : O → t∗.
As a compact Hamiltonian T -space with moment map µ, the image

∆O := µO(O) ⊆ t∗

of the moment map is a convex polytope (Theorem 2.1.9) with additional internal cham-
ber/wall structure, which we now describe.

Choosing a G-invariant positive-definite inner product (for example, the Killing form)
on g induces a G-equivariant isomorphism g ∼= g∗, setting up a correspondence between
adjoint and coadjoint orbits. Using this isomorphism, we consider t∗ as a subspace of g∗

(by identifying t∗ ⊆ g∗ with t ⊆ g). An adjoint orbit admits the structure of a Hamiltonian
T -space by pulling back the symplectic form on the corresponding coadjoint orbit. The
moment map µO for the T -action becomes orthogonal projection on to the subspace t.

Remark 2.3.2. In the proceeding discussion, we will fix such an identification and will refer
to elements of g∗ as elements of g, without reference to the isomorphism g ∼= g∗.

Suppose that O = OX ⊆ g is the adjoint orbit through X ∈ t. Then, O∩ t = W ·X (see
[34, Ch.3]), and each point in the intersection is a fixed point of the T -action. Conversely, if
Y ∈ O is a fixed point of the T -action then, for any Z ∈ t, we have [Z, Y ] = 0, and Z is an
element of the centraliser of t in g. But T is a maximal torus so that its centraliser is itself.
Hence, Z ∈ O ∩ t and Z = w ·X, for some w ∈ W .

Combining the previous discussion with Theorem 2.1.9 proves the following:

Theorem 2.3.3 (Kostant [90]). Let ξ ∈ g∗, and O = G · ξ be the coadjoint orbit through ξ,
considered as a Hamiltonian T -space. Then, the moment polytope is realised as

∆O = Conv(W · ξ). (2.3.7)

Moreover, each w · ξ ∈ ∆O is a vertex.
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Remark 2.3.4. Theorem 2.3.3 appeared first as the Schur-Horn theorem: let A be an n×n
matrix with diagonal entries a1, . . . , an and spectrum λ1 ≥ . . . ≥ λn. Then, (a1, . . . , an)
lies in the convex hull of w · (λ1, . . . , λn). This result was later generalised by Kostant to
Theorem 2.3.3.

Let λ1, . . . , λN ∈ t∗ denote the fundamental weights and their W -conjugates, and let
Hi = Hλi be the stabiliser for the (co)adjoint action of G. Let hi be the Lie algebra of Hi.
Then, T is a maximal torus in Hi, for each i, so we can consider Wi, the Weyl group of the
pair (Hi, T ). The Weyl group Wi is a parabolic subgroup of W (the Weyl group of (G, T ))
and is generated by the reflections corresponding to those roots that are orthogonal to λi.
The weight λi generates a 1-dimensional torus Si ⊆ Hi. In particular, by Proposition 2.1.7,
any point in O = OX that is fixed by Si is a critical point of the moment map µO.

Lemma 2.3.5. 1) The fixed point set of Si is O ∩ hi.

2) µO(O ∩ hi) =
⋃
w∈W Conv(Wi · wX).

Proof. (a) Z ∈ O is fixed by Si if and only if [λi, Z] = 0 if and only if Z ∈ hi.

(b) Suppose that O = OX , for X ∈ t. The intersection O ∩ hi ⊇ O ∩ t = W · X is Hi-
invariant, so it consists of the Hi-orbits passing through W ·X. Each orbit Hiw ·X, for
w ∈ W , is a symplectic submanifold and becomes a Hamiltonian T -space with moment
map being the restriction of µO to Hiw ·X. Hence, by Theorem 2.3.3

µO(Hiw ·X) = Conv(Wiw ·X) (2.3.8)

and the result follows.

Theorem 2.3.6 ([65, 58]). Let O = Oξ be a coadjoint orbit, ξ ∈ g∗, consider as a Hamil-
tonian T -space with moment map µO : O → t∗. Let λ1, . . . , λN ∈ t∗ be collections of
fundamental weights and all their W -conjugates, and denote the stabiliser of λi in G by Hi.
Write Wi for the Weyl group of the pair (Hi, T ). Then, the critical points of the moment
map are the symplectic submanifolds

Hiw · ξ, w ∈ W, i = 1, . . . , N. (2.3.9)

The codimension-1 walls in the moment polytope ∆O are the convex polytopes

Conv(Wiw · ξ), w ∈ W, i = 1, . . . , N. (2.3.10)

Proof. Identify O with an adjoint orbit, so that O = OX , for X ∈ t. A critical point Y ∈ O
must be fixed by some positive dimensional subtorus T ′ ⊆ T (Proposition 2.1.7). Hence,
for any Z ∈ t′, where t′ is the Lie algebra of T ′, we have [Y, Z] = 0. Thus, Y lies in the
centraliser of t′. The wall structure on ∆O implies that the centraliser of any point in O
must be a subalgebra of one of the maximal centralisers hi ([58, Ch. 5]). Hence, Y ∈ hi
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Example 2.3.7. Let G = SU(2), T ⊆ G the diagonal matrices. We identify g∗ with the set
of traceless 2× 2 Hermitian matrices H2

tr : H2 −−−→ g∗

A 7−−−→ (X 7→ i tr(AX))
(2.3.11)

This map is G-equivariant and the moment map for the resulting Hamiltonian T -space
H2 is projection onto the diagonal.

Any G-orbit is uniquely determined by a non-negative real number λ ∈ R≥0. Let O = Oλ
be the corresponding orbit. Thus, A ∈ O if and only if its eigenvalues are ±λ. Theorem 2.3.3
implies that the top-left diagonal entry of A must lie in the interval [−λ, λ]. By Theorem
2.3.6, the walls of the interval are {±λ}, and the chamber (equal to the set of regular values
of the moment map) is the open interval (−λ, λ).

We check this directly: consider a traceless Hermitian matrix

A =

[
a b+ ic

b− ic −a

]
, a, b, c ∈ R.

such that A has eigenvalues ±λ. Then, we must have

λ2 = − detA = a2 + b2 + c2 ≥ a2 =⇒ a ∈ [−λ, λ].

Moreover, if a ∈ [−λ, λ] then a2 ≤ λ2 and we can choose z ∈ C such that |z|2 = λ2 − a2.
Then, the matrix

A =

[
a z
z −a

]
lies in O. That the set of regular values for the moment map is (−λ, λ) follows immediately.

Example 2.3.8. Let G = SU(3). Then, the moment polytope with chamber stucture for a
generic (six dimensional) orbit is given in Figure 2.1.

2.4 Weight varieties

Let G be a compact, semisimple Lie group, T ⊆ G a maximal torus in G. Let O = Oξ ⊆ g∗

be the coadjoint orbit through ξ ∈ g∗, considered as a Hamiltonian T -space with moment
map µ : O → t∗. Let ∆ = µ(O) ⊆ t∗ be the (convex) moment polytope, ∆◦ the union of
chambers in ∆ (Definition 2.1.14). Recall that ∆◦ is precisely the set of regular values of µ.

The coadjoint action of T on t∗ is trivial so that, for any ξ ∈ t∗, the stabiliser of ξ in T
is T itself. The equivariance of the moment map implies that the level set µ−1(ξ) carries a
(proper) T -action.

Definition 2.4.1 (Knutson [86]). Let ν ∈ t∗. The ν-weight variety of Oξ, denoted Oξ(ν), is
the symplectic reduction Oξ�T (ν) of O by T at ν.



CHAPTER 2. SYMPLECTIC GEOMETRY OF COADJOINT ORBITS 23

α1−α1

α2

−α2

α1 + α2

−(α1 + α2)

λ1

λ2

Figure 2.1: Generic hexagonal SU(3) moment polytope. The chambers are the connected
regions bounded by the interior lines.

Remark 2.4.2. Theorem 2.1.9 and Theorem 2.2.1 imply that weight varieties are defined
(nonempty) whenever ν ∈ ∆◦.

Remark 2.4.3. By Theorem 2.2.1 we know that weight varieties are orbifolds. However, in
type A it is a fact (see [86, Ch. 1]) that weight varieties are always manifolds.

For the remainder of this section we describe some specific weight varieties in type A.

Example 2.4.4. Let G = SU(2) with maximal torus T ∼= S1 consisting of the diagonal
matrices in G. Identify g∗ with the traceless 2× 2 Hermitian matrices H2. A 2-dimensional
coadjoint orbit O consists of those A ∈ H2 with distinct nonzero eigenvalues ±λ. In Example
2.3.7 we saw that the a level set of the moment map, at a regular value a ∈ (−λ, λ), could
be identified with the circle µ−1(a) = {z ∈ C | |z|2 = λ2 − a2}. The T -action on the level
set is is t · z = t2z, z ∈ µ−1(a), t ∈ T . In particular, the quotient is a point (which is to be
expected).

Example 2.4.5. Let G = SU(3). Then, the coadjoint orbits have (real) dimension 2 or 6. A
generic coadjoint orbit has dimension 6 and is diffeomorphic to the variety of complete flags
in C3. Any weight variety O(ν) of a generic coadjoint orbit O must be a compact, symplectic
manifold having dimension 2. Using the Kirwan surjectivity theorem [84], there is a sur-
jection from H∗(µ−1(0)) on to H∗(O(ν)). The level set µ−1(0) is identified with a complex
submanifold of the variety of complete flags in C3. In particular, it has cohomology in even



CHAPTER 2. SYMPLECTIC GEOMETRY OF COADJOINT ORBITS 24

degrees only. Thus, The Euler characteristic of O(ν) is 2, so that O(ν) is diffeomorphic to
S2.

Example 2.4.6. Let G = U(1)n × U(2). Then, G acts on Matn×2(C) by conjugation. By
Proposition 2.2.3 and Example 2.2.7, we see that the symplectic reduction of Matn×2(C) by
G is the symplectic reduction of GrC(2, n) by U(1)n. Hence, this symplectic reduction is a
weight variety for a degenerate coadjoint orbit O of U(n) diffeomorphic to GrC(2, n). The
Hamiltonian action of the torus T = U(1)n on GrC(2, n) has associated moment map

µT : GrC(2, n) −−−→ t∗ ∼= Rn

span{u, v} 7−−−→ 1
2
(|u1|2 + |v1|2, . . . , |un|2 + |vn|2)

Here (u, v) is a unitary 2-frame in Cn. Hence, the image of the moment map is

Ξ :=

{
(r1, . . . , rn) ∈ Rn |

n∑
i=1

ri = 1, 0 ≤ ri ≤ 1/2

}
The critical values of moment polytope consists of those r ∈ Ξ such that either

(a) ri = 0, for some i, or

(b) ri = 1/2, for some i, or

(c) there exists a subset I ⊆ {1, . . . , n} with |I| and |Ic| at least two, and
∑

i∈I ri =
∑

i/∈I ri.

Points in the moment polytope satisfying one of the first two conditions are points of external
walls: the interior walls are described by those points in the moment polytope satisfying the
last condition. Therefore, the walls can be described as the subsets

ΞI :=

{
(r1, . . . , rn) ∈ Ξ |

∑
i∈I

ri = 1/2

}
, I ⊆ {1, . . . , n}.

Observe that ΞI = ΞIc , for every I ⊆ {1, . . . , n}. For each i ∈ I, we write Ξi instead of Ξ{i}.
The set of regular values of µT , Ξ◦, is the set of points such that

∑
i∈I ri 6= 0, for any

subset I ⊆ {1, . . . , n}.

Remark 2.4.7. If we scale the symplectic form on GrC(2, n) by λ > 0 then the moment
polytope Ξ in Example 2.4.6 gets ‘inflated’ to

Ξλ =

{
(r1, . . . , rn) ∈ Rn |

n∑
i=1

ri = λ, 0 ≤ ri ≤ λ/2

}
As such, we should consider the following cone over Ξ

C(Ξ) :=

{
(r1, . . . , rn) ∈ Rn

>0 |
∑
i

ri 6= 0,
(r1, . . . , rn)∑

i ri
∈ Ξ

}
.

By abuse of notation we will write r ∈ Ξ when we really mean r ∈ C(ξ).
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2.5 Algebraic viewpoint

In this section we briefly outline the relation between symplectic reductions and GIT quo-
tients. First we recall the notion of the GIT quotient and then we apply the Kempf-Ness
theorem (Theorem 2.5.5) in the setting of coadjoint orbits. For more details see [110].

Let G be a complex connected reductive group with associated root datum (X,R,X∨, R∨)
and fix a choice of Borel subgroup B ⊆ G and maximal torus T ⊆ B. Let S = {αi}i∈I ⊆ X
be simple roots corresponding to this choice of B and P = PJ ⊇ B a standard parabolic
subgroup corresponding to a subset J ⊆ I. The choice of a dominant weight λ ∈ X∗(T )
satisfying 〈λ, α∨〉 = 0, whenever α ∈ I, and 〈λ, α∨〉 > 0, whenever α ∈ S \ I, determines an
embedding of the (partial) flag variety iλ : G/P → P(Vλ), where Vλ is the finite dimensional
irreducible representation of G with highest weight λ (see [70]). Let Lλ := i∗λOP(Vλ)(1) be
the (ample) invertible sheaf of hyperplane sections associated to this embedding, and let Lλ
be the total space of Lλ.

Notation 2.5.1. We write G/λP to denote that we are considering the (partial) flag variety
G/P together with the projective embedding associated to Lλ.

The Borel-Weil-Bott theorem [70] identifies the space of global sections H0(G/P,Lλ) ∼=
Vλ∗ as the irreducible representation of G with highest weight λ∗ = −w0λ, where w0 ∈ W is
the longest element. The homogeneous coordinate ring Rλ associated to this embedding is

Rλ =
⊕
n≥0

H0(G/P,L⊗nλ ) ∼=
⊕
n≥0

Vnλ∗ . (2.5.1)

Remark 2.5.2. For any dominant weight ξ ∈ X≥0, there exists, up to a non-zero scalar, a
unique G-invariant ring structure on the (graded) G-module

⊕
n≥0 Vnξ, known as the Cartan

product, defined as follows: the irreducible representation V(m+n)ξ appears with multiplicity
one in the tensor product Vnξ ⊗ Vmξ. Hence, up to a non-zero scalar, there is a unique
G-invariant surjection

Vnξ ⊗ Vmξ � V(n+m)ξ.

This is how multiplication is defined in the ring
⊕

n≥0 Vnξ.

The line bundle Lλ admits a G-linearisation. By restriction, Lλ can also be considered
as a T -linearised line bundle.

Now, let ∆(λ) := Conv(Wλ∗) ⊆ t∗ be the convex hull of the W -orbit through λ∗, and
choose µ ∈ X∗(T )∩∆(λ). We can twist Lλ by µ to obtain a T -linearised line bundle Lλ(−µ):
as a line bundle, Lλ(−µ) = Lλ, and we twist the action of T in the fibres of Lλ(−µ) by −µ.
We let Lλ(−µ) denote the sheaf of sections of Lλ(−µ).

It is straightforward to see the following:

Lemma 2.5.3. The space of T -invariants H0 (G/P,Lλ(−µ)⊗n)
T

is the µ-weight space in
the (irreducible) representation H0(G/P,L⊗nλ ) ∼= Vnλ∗.
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Definition 2.5.4 ([86]). The ν-weight variety of G/λP is the G.I.T. quotient defined by the
T -linearised line bundle Lλ(−µ),

TµG/λP := Proj
⊕
n≥0

H0 (G/P,L(−µ)n)T = Proj
⊕
n≥0

(Vnλ∗)
nµ

Let K ⊆ G be a maximal compact subgroup, which we will assume is acting unitarily
on Vλ. Let H ⊆ T be a maximal compact torus in T with H ⊆ K. Then, the quotient
X = G/λP is a Hamiltonian H-space with moment map µ : X → h∗.

Applying the Kempf-Ness theorem [110] we have the following result.

Theorem 2.5.5. There is an inclusion µ−1(0) ⊆ Xss inducing a homeomorphism between
the symplectic reduction and the GIT quotient

µ−1(0)/H ∼= TµG/λP

In particular, the symplectic reduction is a projective variety.

We end this section with an elaboration of Example 2.2.4. We will come back to this
example in Section 3.4.

Recall the construction of the moduli space of spatial n-gons Pr,n, r = (r1, . . . , rn) ∈ Rn
>0,

from Example 2.2.4. Suppose that r ∈ Zn>0. An application of the Kempf-Ness Theorem
[110] implies that there is an identification

Pr,n ∼= (P1(C))n�PGL2(C)

The Gelfand-Macpherson correspondence [43] provides the following isomorphism of G.I.T.
quotients

TµSLn(C)/λP ∼= (P1(C))n�PGL2(C)

where P ⊆ SLn(C) is a maximal parabolic such that G/λP ∼= Gr(2, n), T ⊆ SLn(C) is a
maximal torus. The linearisation defined by µ corresponds to the action of T on Cn given
by

diag(t1, . . . , tn) 7−−−→ diag(trt1, . . . , t
rtn)

where tr = tr11 · · · trnn is the character defined by r.
Hence, we have the following result (recall Example 2.4.6).

Theorem 2.5.6 (Hausmann-Knutson, [63]). Let r ∈ Zn>0. Then, the polygon space Pr,n
admits the structure of a projective variety and can be identified with a weight variety. Speci-
fially, the polygon space Pr,n is a symplectic reduction of GrC(2, n), the Grassmannian of
2-planes in Cn, by the compact torus H ⊆ T at r ∈ Ξ◦.

Remark 2.5.7. To ensure compatibility of symplectic forms coming from our constructions
of Pr,n (Example 2.2.4) and the symplectic reduction of GrC(2, n), we scale the symplectic
form on GrC(2, n) by |r| > 0 (cf. Remark 2.4.7). In particular, given r ∈ Rn

>0, the moment
polytope of the torus action on GrC(2, n) used to define Pr,n as a symplectic quotient is

Ξ|r| = {s ∈ C(Ξ) | |s| = |r|}.
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Chapter 3

Mirror constructions

In this chapter we develop a new approach to computing quantum cohomology of weight
varieties motivated by a conjecture of Teleman. Let G be a semisimple complex algebraic
group, P ⊆ G a parabolic subgroup containing a maximal torus T . Using the mirror Landau-
Ginzburg model (MP , fP ) of a partial flag variety X = G/P introduced by Rietsch [115], the
quantum cohomology of a symplectic reduction of X by a compact torus H ⊆ T at ν ∈ h∗

is conjectured to be obtained by restricting the superpotential fP to a certain subvariety Yν
of MP and computing the Jacobian ring. In fact, the mirror family MP is a subvariety of
a Borel subgroup LB− of the Langlands dual LG and the subvariety Yν is the fibre of the
canonical homomorphism LB− → LT over exp(2πiν). Here we canonically identify h∗ with
the subalgebra Lh ⊆ L t.

In Section 3.1 we recall the construction of the Rietsch mirror family Landau-Ginzburg
(MP , fP ) and the definition of the (T -equivariant) superpotential. We briefly discuss the
work of Rietsch relating the (T -equivariant) quantum cohomology to the Jacbobian ring
of fP and the mirror conjectures that she proposed. In the short Section 3.2, we describe
recent work of Teleman on topological actions of compact, connected Lie groups on Fukaya
categories. Then, we introduce Teleman’s conjecture on the construction of Fukaya categories
of weight varieties and the consequences for quantum cohomoloy of weight varieties. Section
3.3 introduces several formulae for computing the superpotential fP and provides an explicit
expression for fP with respect to a family of parameterisations of MP . In Section 3.4 we
provide a new conjectural description of the quantum cohomology of weight varieties, and
introduce a conjectural presentation of these rings. We then focus on the problem in type
A and verify this presentation for weight varieties of low rank, paying particular attention
to polygon spaces Pr,n. Finally, in Section 3.5 we discuss further avenues of research and
possible extensions of our work.

Let G be a complex reductive algebraic group with root datum (X,R,X∨, R∨). We will
use the notation and conventions from Section 1.3. Let T ⊆ B± ⊆ G be a choice of maximal
torus and opposite Borel subgroups, N± ⊆ B± the unipotent radicals. Let P = PJ ⊇ B+

be a standard parabolic subgroup. Let LG be the Langlands dual group, LT, LB±,
LN±

the corresponding subgroups (associated to the choice of simple coroots), and LP the dual
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standard parabolic subgroup (corresponding to the subset J(P ) ⊆ I). At certain points in
this chapter, we will restrict to the case when G is semisimple.

3.1 Rietsch mirror construction

In this section we introduce a candidate for the (B-model) equivariant Landau-Ginzburg
model (MP , fP ) of the (A-model) generalised flag variety G/P proposed by Rietsch [115].
The mirror family MP is realised as a subvariety of the opposite Langlands dual subgroup
LB− ⊆ LG and parameterised by Z(LLP ), the centre of the unique Levi LLP ⊆ LP containing
LT . The superpotential fP should be considered as a family of holomorphic functions f tP ,
t ∈ Z(LP ), on the fibres of the mirror family MP .

To each i ∈ R(w−1
P ) we will describe an explicit expression for the restriction of the

superpotential fP to a dense open subset U ⊆ MP , where U ∼= (C×)`(wP ). We will see that,
with respect to this parameterisation, fP is a Laurent polynomial whose terms correspond
to the divisor constituents of an anticanonical divisor in G/P . This is also observed in [94].

The verification that MP is the ‘correct’ mirror family takes the form of an identifica-
tion of the equivariant quantum cohomology ring qH∗(G/P ) with the Jacobian ring of the
superpotential Jac(fP ). This result is originally due to Rietsch.

Rietsch proposed a stronger statement of the mirror symmetry between G/P and MP

in the form of a mirror conjecture. We briefly discuss this conjecture and some partial
verifications due to Lam, Lam-Templier [93], [94].

For ease of notation we swap the roles of G and LG. In particular, we are going to
describe the mirror family MLP to the flag variety LG/LP . By abuse of notation we will
write MP instead of MLP .

Let w−1
P ∈ W P be the minimal length coset representative having maximal length. We

record the following elementary result (see [17]).

Lemma 3.1.1. w−1
P = w0w

P
0 and `(w−1

P ) = `(wP ) = `(w0)− `(wP0 ) = dimG/P .

By Lemma 3.1.1 we have w−1
P wP0 = w0 = wP0 wP and

w−1
P · wP0 = w0, wP0 · wP = w0.

Let P ∗ be the standard parabolic subgroup containing B+ and w0LPw
−1
0 . Thus, J(P ∗) =

J(P )∗, wP0 w0 = w0w
P ∗
0 and

wP
∗

0 · w−1
P ∗ , wP ∗ · wP

∗
0 = w0.

In particular, w−1
P = wP ∗ .
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The Landau-Ginzburg model (MP , fP )

Consider the incidence variety

ZP := {(t, b) ∈ Z(LP )×B− | b ∈ N+Z(LP )wPN+},

where Z(LP ) is the centre of the Levi subgroup LP . Projection onto the second factor
pr2 : ZP → B− is an isomorphism

ZP ∼= MP := B− ∩N+Z(LP )wPN+ ⊆ B−. (3.1.1)

Let pr1 : ZP → Z(LP ) be the projection onto the first factor. For t ∈ Z(LP ), we can identify
the fibre over t as

pr−1
1 (t) ∼= M t

P := B− ∩N+twPN+ (3.1.2)

We will require a unique decomposition of elements in MP . Recall the Levi decomposition
P = LPNP . Here LP is the reductive subgroup generated by T and imxj, im yj, j ∈ J(P ),
and NP = N+(wP ), where for w ∈ W , we define

N+(w) :=
∏
α∈R+

w−1(α)∈R−

imxα = N+ ∩ wN−w−1

We have wN+(w)w−1 ⊆ N−, for any w ∈ W .
The following result follows from the standard description of Bruhat cells in G (see [122]).

Lemma 3.1.2. Let w ∈ W .

(a) Any x ∈ B+wB+ can be written uniquely as x = ztwu, where z ∈ N+(w), t ∈ T, u ∈
N+.

(b) Any x ∈ B+wB+ can be written uniquely as x = vwsy, where v ∈ N+, s ∈ T, y ∈
N+(w−1).

Applying this result to MP = B−∩N+Z(LP )wPN+, we obtain the unique decompositions

MP = B− ∩N+(wP )Z(LP )wPN+

and
MP = B− ∩N+wPZ(LP ∗)N+(wP ∗).

Definition 3.1.3. (i) Define the quantum structure map to be the projection

q : MP −−−→ Z(LP )

x = ztwPu 7−−−→ t

This map is well-defined. The fibres of q are the subvarieties

M t
P = B− ∩N+twPN+

from (3.1.2).
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(ii) Define the equivariant structure map to be the projection

e : MP ⊆ B− = N−T −−−→ T

x = vs 7−−−→ s

As B−/N− ∼= T , the map e can be identified with the canonical quotient homomor-
phism.

Definition 3.1.4. Let LG/LP be a generalised flag variety. Define the mirror of LG/LP to
be the subvariety

BwP
− := B− ∩N+wPN+ ⊆ B−. (3.1.3)

We define the mirror family to be the subvariety MP defined in (3.1.1) considered as a
(trivial) family over Z(LP ) via the quantum structure map q. We will write (MP , q) to
denote this family.

Remark 3.1.5. The mirror family MP (resp. mirror BwP
− ) of LG/LP is an example of a

double Bruhat cell (resp. reduced double Bruhat cell). These are subvarieties of a reductive
group G of the form

B−vB− ∩B+uB+ (resp. B−vB− ∩N+uN+)

where u, v ∈ W [36].

We record some straightforward properties of the fibres M t
P .

Proposition 3.1.6.

(a) Let t ∈ Z(LP ). Then, M t
P is smooth variety of dimension dimM t

P = dim `(wP ) =
dim LG/LP , isomorphic to BwP

− .

(b) Multiplication in G induces an isomorphism of varieties

m : Z(LP )×BwP
−

∼−−−→ MP

(t, zwPu) 7−−−→ tzwPu
(3.1.4)

Proof. (a) That M t
P is isomorphic to BwP

− is immediate. The map

M t
P −−−→ G/B−

x 7−−−→ bw0B−
(3.1.5)

identifies BwP
− with the (open) Richardson variety

R−
wP0 ,w0

:=
(
B+wP0 B− ∩B−w0B−

)
/B− ⊆ G/B−.
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The varieties RwP0 ,w0
are known to be smooth of dimension `(w0)− `(wP0 ) = `(wP ), see

[21]. We also have

`(w0)− `(wP0 ) = (dim LG− dim LB+)− (dim LP − dim LB+)

= dim LG− dim LP

= dim LG/LP.

(b) This is obvious.

Remark 3.1.7. For any t ∈ Z(LP ), we can embed M t
P in G/B+ using the map

M t
P −−−→ G/B+

x 7−−−→ x−1wP0 B+

and then use the canonical projection p : G/B+ → G/P to embed M t
P in G/P . In this way,

G/P can be considered to be a compactification of the fibres M t
P , t ∈ Z(LP ), of the mirror

family (MP , q). The image is a (projected) open Richardson variety [87] and M t
P can be

considered as an open subvariety of G/P .
As an open (projected) Richardson variety, the image of the embedding M t

P → G/P is
the complement of an anticanonical divisor ∂G/P in G/P [87, Lemma 5.4], where ∂G/P is the
multiplicity-free union of the divisors Di, i ∈ I, and Di, i /∈ J(P ),

Di := p(Rw0si
wP0

), and Di := p(Rw0

siwP0
).

Here p : G/B+ → G/P is the canonical projection and the Richardson variety Rv
u ⊆ G/B+ is

the intersection of the Schubert cell B−uB+/B+ with the opposite Schubert cell B+vB+/B+.

We now proceed to define the (equivariant) superpotential associated with MP .

Definition 3.1.8. For i ∈ I, define the elementary characters χi : N+ → A1 uniquely
determined by χi(xj(a)) = δij · a. The standard regular character is the character

χ :=
∑
i∈I

χi. (3.1.6)

Definition 3.1.9. Define the superpotential function fP to be the holomorphic function

fP : MP = B− ∩N+Z(LP )wPN+ −−−→ C
ztwPu 7−−−→ χ(z) + χ(u)

(3.1.7)

For t ∈ Z(LP ), define f tP : M t
P → C to be the restriction of fP to a fibre of q.
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Remark 3.1.10. Writing x = ztwPu ∈ B− ∩N+(wP )twPN+, with z ∈ N+(wP ), t ∈ Z(LP ),
u ∈ N+ uniquely determined by x, we have

fP (x) = χ(z) + χ(u) =
∑
i/∈J(P )

χi(z) + χ(u).

For the remainder of this section we assume that G is semisimple. We will also require
the LT -equivariant superpotential. This is a holomorphic function defined on MP × L t which
is essentially the map

(x, h) 7−−−→ fP (x) + exp(〈h, log π0(x)〉).

Here we have made the canonical identification L t ∼= t∗.
Define the variety M̃P by the fibre diagram

M̃P t

MP T

exp

e

Hence, M̃P may be identified with {(b; y) ∈ MP × t | b exp(−y) ∈ N−}. For t ∈ Z(LP ),
consider the correspondence

M̃ t
P := {(b, y) ∈M t

P × t | b exp(−y) ∈ N−}.

The projection
cP : M̃P −−−→ MP

(b; y) 7−−−→ b

is a covering map and there is a commutative diagram

M̃P MP

Z(LP ) Z(LP )

pr1

cP

pr1 (3.1.8)

induces a covering on fibres
M̃ t

P −−−→ MP

(b, y) 7−−−→ b

In (3.1.8), both projections pr1 corrspond to projections on to the first factor. Define the
holomorphic function

φ̃ : M̃P × L t −−−→ C
(b, y;h) 7−→ exp(〈h, y〉)

(3.1.9)

Here we identify L t with t∗.
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Definition 3.1.11. Define the LT -equivariant superpotential function to be the (multi-
valued) holomorphic function

fP,LT := fP + ln φ̃ : MP × L t −−−→ C

Remark 3.1.12. It is immediate from the definition of φ̃ that the logarithmic derivative in
the direction of M̃P is independent of y; that is, the logarithmic deriviative of φ̃ depends
only on the MP directions. In particular, fixing h ∈ L t, we can talk about the (logarithmic)
critical points of φ̃( ;h) in a fibre M t

P in the original mirror family MP . As such, we can
define

M crit
P,LT := {(b;h) ∈MP × L t | b is a critical point of (fP + ln φ̃( ;h))|Mt

P
, t ∈ Z(LP )}

to be the set of (logarithmic) critical points of φ̃ in a fibre M t
P of MP .

Remark 3.1.13. For our purposes, we will be interested in the critical points of the LT -
equivariant superpotential function fP,LT restricted to M t

P × {h}, for fixed t ∈ Z(LP ) and
h ∈ L t. In particular, the equivariant part will not come into consideration when determining
the critical points of f tP,LT .

Quantum cohomology and mirror conjectures

We will briefly indicate why the mirror family MP , together with equivariant superpotential
fP,LT , are the ‘correct’ Landau-Ginzburg B-model to be considered as the (equivariant)
mirror to LG/LP . We will describe Rietsch’s construction of (a localisation of) the LT -
equivariant (small) quantum cohomology qH∗T (LG/LP ) and recent results of Lam and Lam-
Temperlier on a mirror conjecture formulated by Rietsch in [115, Conjecture 8.2]. In this
section we assume that G is semisimple.

The (small) quantum cohomology ring of LG/LP , qH∗(LG/LP ), is a deformation of the
usual cohomology ring H∗(LG/LP ) ≡ H∗(LG/LP,C) with k = dimH2(LG/LP ) parameters,
admitting the structure of a C[q1, . . . , qk]-module. As a C[q1, . . . , qk]-module we have

qH∗(LG/LP ) ∼= H∗(LG/LP )⊗ C[q1, . . . , qk].

The ring structure is defined by deforming the usual cup product, with new (deformed)
structure constants defined in terms of genus 0, 3-point Gromov-Witten invariants. The LT -
equivariant quantum cohomology, qH∗LT (LG/LP ), is defined in terms of equivariant genus 0,
3-point Gromov-Witten invariants, and is a module over C[q1, . . . , qk] and H∗(BLT ) ∼= C[L t].
It can be considered as a deformation of the usual LT -equivariant cohomology H∗LT (LG/LP ).
See [30], [42] and [11] for further details about (equivariant) Gromov-Witten invariants in
general, and [82] for the (equivariant) Gromov-Witten invariants of (partial) flag varieties.

The small quantum cohomology of full flag varieties LG/LB+ has seen significant progress
over the past two decades. Presentations of qH∗(LG/LB+) were given by Givental-Kim [50],
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Ciocan-Fontanine [29] and Kim [83] and identified with the regular functions of the nilpotent
leaf of the Toda lattice of the Langlands dual G. In [49], Givental proved a mirror conjecture
relating oscillatory integrals on the mirror manifold with solutions to his quantum D-module.

Building on the (unpublished) work of D. Peterson, Rietsch obtained the following result
for all partial flag varieties.

Theorem 3.1.14 (Rietsch, [115, Theorem 4.1]). There exists an isomorphism

qH∗LT (LG/LP )[q−1
1 , . . . , q−1

k ] ∼= C[M crit
P,LT ] (3.1.10)

between (a localisation of) the LT -equivariant quantum cohomology of LG/LP and the co-
ordinate ring of the (possibly non-reduced) variety M crit

P,LT (i.e. the Jacobian ring of fP,LT ).
The quantum parameters on the right hand side of the isomorphism arise from the quan-
tum structure map q : M crit

P,LT → Z(LP ), and the equivariant structure is given by projection

M crit
P,LT →

L t onto the second factor.

Specialising the equivariant parameters to 0 gives the following identification of the non-
equivariant quantum cohomology with the Jacobian ring of the superpotential

Corollary 3.1.15. There is an isomorphism

qH∗(LG/LP ) ∼= C[M crit
P ] (3.1.11)

where the right hand side is the (possibly non-reduced) variety

M crit
P := {b ∈MP | b is a critical point of (fP )|Mt

P
, t ∈ Z(LP )} (3.1.12)

In [115] Rietsch proposed the following (LT -equivariant) mirror conjecture:

Conjecture 3.1.16 (Rietsch, [115, Conjecture 8.2]). A full set of solutions to the LT -
equivariant quantum differential equations of LG/LP (defined in [47], [30], for example) is
given by the period integrals

SΓ(t, h) =

∫
Γt

exp(fP/~)φ̃( , h)ωt (3.1.13)

where Γ = {Γt}t∈Z(LP ) is a continuous family of cycles in the fibres M t
P , and ωt is a family

of non-vanishing to forms on the fibres.

Conjecture 3.1.16 can be considered as a strengthening of Theorem 3.1.14. Conjecture
3.1.16 has been shown to hold in several cases.

Theorem 3.1.17 (Lam, [93]). Let LP = LB+, so that LG/LB+ is a full flag variety. Then,
Conjecture 3.1.16 holds.
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Recall that a Dynkin node i ∈ I is miniscule if the set of weights of V ($i), where $i is
a fundamental weight, are extremal. A parabolic subgroup P is miniscule if J(P ) = I \ {i},
where i is miniscule.

If LP ⊆ LG is miniscule then the partial flag varieties LG/LP includes Grassmannians,
orthogonal Grassmannians and even dimensional quadrics as examples.

Theorem 3.1.18 (Lam-Templier, [94]). Let LP ⊆ LG be a miniscule parabolic subgroup.
Then, Conjecture 3.1.16 holds.

3.2 A conjectural mirror construction for weight

varieties

In his 2014 ICM address, Teleman [125] described a conjectural mirror construction for
symplectic reductions M �G, with G a compact, connected Lie group and M a compact
Hamiltonian G-space. This construction is a consequence of a proposed general framework
focusing on topological actions of G on Fukaya categories arising from Hamiltonian G-spaces
and gauging topological quantum field theories (TQFTs). We will briefly describe this
conjecture when M is a flag variety of G, omitting the majority of the (conjectural) details
and definitions. For the general story we refer to [125], and the references therein.

Let G be a compact, connected Lie group and T ⊆ G be a maximal torus. Suppose that
M = G/L ∼= Oq ⊆ g∗ is a coadjoint orbit for G with its Kirillov-Kostant-Souriau symplectic
structure given by q. Then, M is a Hamiltonian G-space and, upon restriction to T , can be
considered as a Hamiltonian T -space.

Definition 3.2.1 ([16]). The Bezrukavnikov-Mirkovic-Finkelberg space, BFM(G), is the
holomorphic symplectic reduction of T ∗regGC by conjugation under GC (the complexifica-
tion of G), where T ∗regGC denotes the (open) submanifold of elements that are regular in the
cotangent fibre.

Remark 3.2.2 ([16], [125, Theorem 5.1]).

1) If G = T then BFM(T ) = T ∗TC.

2) The zero fibre of the moment map for the Hamiltonian GC-space T ∗regGC is the universal
centraliser

Zreg = {(g, ν) ∈ GC × (g∗C)reg | g · ν = ν, ν regular} (3.2.1)

The space Zreg is smooth with stabilisers of constant dimension. As such, the symplectic
manifold structure is evident.

In [125], Teleman considers the (conjectural) 2-category
√
Coh(BFM(G∨)), the Kapustin-

Rozansky-Saulina (KRS) 2-category of BFM(G∨) ([73], [74]), which (conjecturally) contains,
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for example, (G-equivariant) Fukaya categories of coadjoint orbits F(G/L, q) and the dg-
category Coh(L) of coherent sheaves on smooth holomorphic Lagrangians L ⊆ BFM(G∨) as
objects. To be more precise,

√
Coh(BFM(G∨) is the sheaf of global sections of a sheaf of

OBFM(G∨)-linear 2-categories, over the space BFM(G∨).

Remark 3.2.3. Given holomorphic Lagrangians L,L′ ⊆ BFM(G∨), which we consider as
objects in

√
Coh(BFM(G∨)), their Hom-category Hom(L,L′) will be a sheaf of categories

supported on the intersection L ∩ L′ and equivalent to the matrix factorization category
MF(L,Ψ), for some holomorphic function Ψ : L→ C. For more details see [125, Sec. 3].

‘Theorem’ 3.2.4 ([125]). The space BFM(G∨) admits a smooth Lagrangian foliation, pa-
rameterised by pairs (L, q), where T ⊆ L ⊆ G is a Levi subgroup and q ∈ Z(L∨C). Moreover,
the leaves of this foliation (conjecturally) arise as the support of the G-equivariant Fukaya
categories F(G/L, q).

Remark 3.2.5.

1) The quote marks appearing in ‘Theorem’ 3.2.4 should be interpreted as follows: the
existence of a smooth foliation of BFM(G∨) of the type indicated is proved in [125,
Theorem 6.8]. However, the statement concerning Fukaya categories relies on (yet
unproven) equivalences of categories predicted by homological mirror symmetry, and
on the (conjectural) construction of the KRS 2-category.

2) The story here is formally analogous to the Borel-Weil construction of irreducible
representions of G. The appearance of the Fukaya category F(G/L, q) arises from
symplectic induction of the category of vector spaces admitting actions of L (passing
through q ∈ Z(L∨C)).

The flag variety (G/L, q) admits the structure of a Hamiltonian T -space. Therefore, the
T -equivariant Fukaya category F(G/L, q) is an object in BFM(T∨) = T ∗T∨C . We denote its
holomorphic Lagrangian support Λ(q) ⊆ BFM(T∨).

Conjecture 3.2.6 (Teleman, [125]). Let ν be a regular value of the moment map µ : G/L→
t∗ for the Hamiltonian T -action. Let t ∈ Z(LLC) denote the symplectic structure on G/L.
Then, the Fukaya category of the symplectic reduction (G/L)� T (ν) can be computed as
the category Hom(Sν ,Λ(t)), where Sν is the cotangent fibre over exp(ν) ∈ T∨.

At the level of quantum cohomology, we can reformulate the conjecture as follows:

Conjecture 3.2.7. Let ν be a regular value of the moment map µ : G/L → t∗ for the
Hamiltonian T -action. Let t ∈ Z(LLC) denote the symplectic structure on G/L. Then,
the quantum cohomology of the symplectic reduction (G/L)� T (ν) can be computed as
the Jacobian ring of the restriction of the T -equivariant superpotential to the fibre of the
equivariant structure map e : MP → LT lying over exp(2πiν). Here we canonically identify
t∗ ∼= L t. The quantum structure comes from the variation of t ∈ Z(L).
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Moreover, if G has nontrivial (finite) centre Z, then the number of critical points appears
with multiplicity |Z|.

3.3 Formulae for the superpotential

In this section we describe formulae that will allow us to compute fP . This will be essential
in our approach to computing the quantum cohomology of weight varieties.

First, we have the following formula for fP in terms of x ∈MP .

Lemma 3.3.1. For any x ∈ N+Z(LP )wPN+ we have

fP (x) = χ
(
π+(w−1

P x)
)

+
∑
i/∈J(P )

χi

(
π+(w−1

P

−1
xι)
)

Here g 7→ gι is the positive inverse defined in Section 1.3.

Proof. Let x = ztwPu, with z ∈ N+(wP ), u ∈ N+. Then, π+(w−1
P x) = u. Let P ∗ be the

standard parabolic containing B+ and w0LPw0. Write u = uLv, where uL ∈ N+ ∩ LP ∗ , and
v ∈ N+(w−1

P ). Define v′ := wPuLw
−1
P ∈ N+ ∩ LP ; in particular, tv′ = v′t. Hence,

x = ztwPu = ztwPuLv = zv′twPv

and

π+(w−1
P

−1
xι) = π+(w−1

P

−1
vιw−1

P t−1(zv′)ι) = (zv′)ι

Here we have used that v ∈ N+(w−1
p ).

For any i /∈ J(P ), χi((zv)ι) = χi(z): the fact that χi(n
ι) = χi(n), for all i ∈ I, n ∈ N+,

follows from the definition of the map n 7→ nι. Hence, by Remark 3.1.10, for x = ztwPu ∈
N+(wP )twPN+,

fP (x) =
∑
i/∈J(P )

χi(z) + χ(u) =
∑
i/∈J(P )

χi(π
+(w−1

P

−1
xι)) + χ(π+(w−1

P x))

In the case that G is simply connected we can use the identity

χi(π
+(g)) =

∆$i,si$i(g)

∆$i,$i(g)

to obtain a formula for fP using generalised minors (recall Section 1.3).

Lemma 3.3.2. Let G be simply-connected. For any g ∈ N+Z(LP )wPN+,

fP (g) =
∑
i∈I

∆wPωi,siωi(g)

∆wPωi,ωi(g)
+
∑
i/∈J(P )

∆w0siωi,wi(g)

∆w0ωi,ωi(g)
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Remark 3.3.3. Observe that the terms in the above descriptions of fP correspond to the
divisors Di, i ∈ I, Di, i /∈ J(P ), defined in Remark 3.1.7. This is analogous to the situation
for mirror symmetry of Fano toric varieties. Further discussion can be found in [80, Chapter
2].

We will also make use of the following description of fP due to Lam-Templier [94]. In
earlier work we obtained a similar expression but we follow the presentation in [94].

For any w ∈ W , define the variety

Nw
+ := B−wB− ∩N+ ⊆ N+ (3.3.1)

This variety is a reduced Bruhat cell (Remark 3.1.5).

Lemma 3.3.4. (a) There is an isomorphism

η : BwP
− −−−→ N

w−1
P

+

x 7−−−→ π+(w−1
P x)

(b) There is an injection

τ : N
w−1
P

+ −−−→ N+(wP )

u 7−−−→ π+((wPu)−1))

Proof. (a) If x = zwPu ∈ B− ∩N+(wP )wPN+ then π+(w−1
P x) = u. Now, observe that

u−1 = x−1zwP = x−1wP (w−1
P zwP ) ∈ B−wPB−

so that u ∈ B−w−1
P B− ∩ N+. Hence, η is well-defined. Conversely, if u ∈ Nw−1

P
+ then

u−1 ∈ NwP
+ and uw−1

P ∈ B−N+(wP ). Then, the inverse to η is seen to be

u 7−−−→ π−(u−1w−1
P )−1.

(b) In the course of the proof above we saw that π+(u−1w−1
P ) ∈ N+(wP ). In fact, we find

τ(u) = η(u)(wPu)−1

so that τ is injective.

Lemma 3.3.4 implies that the restriction of the superpotential fP to a fibre of q can be

defined as a map on N
w−1
P

+ : we can trivialise the mirror family

Z(LP )×Nw−1
P

+

m◦(id×η−1)−−−−−−−→ MP

(t, u) 7−−−→ tη−1(u) = tτ(u)wPu
(3.3.2)
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Hence, if x = ztwPu ∈M t
P then, as function of (t, u) ∈ Z(LP )×Nw−1

P
+ ,

f tP (t, u) = χ(tτ(u)t−1) + χ(u). (3.3.3)

Lemma 3.3.5. Let u ∈ Nw−1
P

+ . Then,

π+(w−1
0 uTwP

∗
0 ) = w−1

0 τ(u)−Tw0,

where P ∗ is the standard parabolic subgroup containing B+ and w0LPw
−1
0 .

Proof. Let u ∈ Nw−1
P

+ . Then, x = τ(u)wPu ∈ BwP
− and u = w−1

P τ(u)−1x. Hence,

w−1
0 uT = w−1

0 xT τ(u)−TwP = w−1
0 xTw0w

−1
0 τ(u)−Tw0wP

∗
0

−1
(3.3.4)

Here we use that wPw
P ∗
0 = w0, with `(wP )+`(wP

∗
0 ) = `(w0), so that wP = w0wP

∗
0

−1
. Finally,

x ∈ B− so that w−1
0 xT ξw0 ∈ B− and the result follows.

Since, for any i ∈ I,
w−1

0 yi(a)w0 = xi∗(−a),

we see that
χi(τ(u)) = χi∗(w

−1
0 τ(u)−Tw0)

and ∑
i/∈J(P )

χi(τ(u)) =
∑
i/∈J(P )

χi∗(w
−1
0 τ(u)−Tw0) =

∑
i/∈J(P ∗)

χi(π
+(w−1

0 uTwP
∗

0 ))

Lemma 3.3.6. For u ∈ Nw−1
P

+ , i ∈ I,

χi(τ(u)) = χi∗(π
+(w−1

0 uTwP
∗

0 )).

Hence, if x = ztwPu ∈ B− ∩N+(wP )Z(LP )wPN+ then

fP (x) = χ(u) +
∑

i/∈J(P ∗)

αi∗(t)χi(π
+(w−1

0 uTwP
∗

0 ))

In particular, when G is simply-connected we have

f tP (ztwPu) = χ(u) +
∑

i/∈J(P ∗)

αi∗(t)
∆wP

∗
0 si$i,w0$i

(u)

∆$i,w0$i(u)

Proof. Noting that χi(tnt
−1) = αi(t)χi(n), for any n ∈ N+, the result follows from (3.3.3)

and Lemma 3.3.5. For the last formula recall the definition of the generalised minors in
Section 1.3 and note that, for any i /∈ J(P ∗), wP

∗
0 $i = $i.
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We will now describe a formula for the restriction of fP to a family of open subsets

Ui ⊆ N
w−1
P

+ , i ∈ R(w−1
P ), each of which is isomorphic to a complex algebraic torus.

Let i = (i1, . . . , ir) ∈ R(w), w ∈ W . Define the map

xi : (C×)r −−−→ Nw
+

(a1, . . . , ar) 7−−−→ xi1(a1) · · ·xir(ar)

An essential property of the maps xi is the following result.

Lemma 3.3.7 (Fomin-Zelevinsky, [36, Theorem 1.2]). Let i ∈ R(w), w ∈ W . Then, xi is
an open embedding.

Definition 3.3.8. Let i ∈ R(w−1
P ). Define the open embedding

ji : Z(LP )× (C×)`(wP ) −−−→ MP

(t, a) 7−−−→ tτ(xi(a))wPxi(a)
(3.3.5)

We call ji the FZ-parameterisation in the direction i.

Proposition 3.3.9 ([94]). Assume G is simply-connected. Let i = (i1, . . . , ir) ∈ R(w−1
P ).

Then,

fP (ji(t, a)) = a1 + . . .+ ar +
∑

i/∈J(P ∗)

αi∗(t)Fi(a)

where Fi(a) ∈ Z≥0[a±1 , . . . a
±
r ] is a Laurent polynomial with nonnegative integer coefficients.

Proof. We use Lemma 3.3.6. Let i = (i1, . . . , ir) ∈ R(w−1
P ). First, we observe that if

u = xi(a) then

χi(u) =
∑
ij=i

χij(xij(aj)) =
∑
ij=i

aij .

Hence, χ(u) = a1 + . . . + ar. Finally, [14, Theorem 5.8] shows that ∆wP
∗

0 si$i,w0$i
(xi(a))

is a polynomial with nonegative integer coefficients, and [14, Corollary 9.4] shows that
∆wP

∗
0 $i,w0$i

(xi(a)) is a monomial.

3.4 Computing the quantum cohomology of polygon

spaces

In this section we describe a new approach to computing the quantum cohomology of a class
of weight varieties in type A: the polygon spaces Pr,n (see Examples 2.2.4, 2.2.6 and Section
2.5). First, we set up our notation specific to this setting.

Let G = SLn+1(C), and write I = {1, . . . , n}. Choose T to be the maximal torus
consisting of diagonal matrices and write t = diag(t1, . . . , tn+1) for elements of T . Let
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H ⊆ T be a maximal torus in T , identified with (S1)n. We set B+ to be the subgroup of
upper triangular matrices with unipotent radical N+ being the subgroup of upper triangular
unipotent matrices. The opposite Borel B− consists of lower triangular matrices and its
unipotent radical is N−, the subgroup of lower triangular unipotent matrices. If P ⊇ B+

is a standard parabolic, J(P ) = {j1, . . . , jl} ⊆ I, so that {k1, . . . , km} = I \ J(P ), then P
consists of those upper block-triangular matrices having blocks of the form

A1 ∗ ∗ ∗ ∗
0 A2 ∗ ∗ ∗
...

...
. . .

...
...

0 0 · · · Am ∗
0 0 · · · 0 Am+1

 ∈ G

where A1 is k1 × k1, Ai is (ki − ki−1) × (k2 − k1), for i = 2, . . . ,m, and Am+1 is (n + 1 −
km)× (n+ 1− km). The Levi subgroup is the subgroup of block-diagonal matrices in PJ . In
particular, Z(LP ) is identified with an algebraic torus of rank m.

The Langlands dual group is LG = PGLn+1(C) which we identify with G/Z, Z ⊆ G is
the (finite, cyclic) centre of G. The dual torus LT is identified with T/Z. The corresponding
subgroups LB± and LN∨± are the images of corresponding subgroups of G. We identify LN±
with N± (there is a unique lift under the canonical quotient homomorphism). For standard
parabolic P ⊆ G we identify LP with the image of P in LG.

Let (X,R,X∨, R∨) be the root datum of G. The weight lattice X = Hom(T,Gm) admits
a basis of fundamental weights $1, . . . , $n,

$i : T −−−→ C×

diag(t1, . . . , tn+1) 7−−−→ t1 · · · ti

The positive roots corresponding to B+ are R+ = {αij | 1 ≤ i < j ≤ n+ 1}, where

αij : T −−−→ C×

diag(t1, . . . , tn+1) 7−−−→ tit
−1
j ,

and corresponding simple roots αi := αi,i+1, i = 1, . . . , n. In particular,

αij = αi + . . .+ αj, i < j.

The simple coroots are S∨ = {α∨i | i = 1, . . . , n}, where

α∨i : C× −−−→ T

c 7−−−→ diag(1, . . . , c, c−1︸ ︷︷ ︸
i,i+1

, . . . , 1)
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The Weyl group is W = Sn. Define si, i = 1, . . . , n, to be the standard adjacent trans-
positions. The longest element is the permutation

w0 = s1s2s1s3s2s1 · · · sn · · · s1. (3.4.1)

For a standard parabolic subgroup PJ , J = {j1, . . . , jl}, the Weyl group of the pair (LP , T )
is the subgroup generated by sj1 , . . . , sjl and can be identified with a product of permutation
groups. The longest element wP0 is the product of the longest elements for each of these
permutation groups.

For each i ∈ I, we have the root subgroups

xi : C −−−→ N+

c 7−−−→ I + cEi,i+1

and
yi : C −−−→ N+

c 7−−−→ I + cEi+1,i

Here Eij is the matrix with 1 in the ij-entry and 0s elsewhere, I is the identity matrix.
The monomial matrix representative si =∈ NG(T ), i ∈ I, is the the image of the matrix[

0 −1
1 0

]
in the SL2-triple generated by imxi and im yi.

The quantum cohomology of a point

As a sanity check, we describe the simplest case of a (proper) parabolic subgroup P ⊆ G of
maximal dimension. This case will also provide highlights of the methods we use in the next
section when we consider polygon spaces.

Let J = {2, . . . , n} and P = PJ be the parabolic subgroup

P =

{[
a bt

0 C

]
∈ G

}
.

Then, LG/LP ∼= PnC. As PnC is a toric variety under the (diagonal) action of LT any symplectic
reduction will be a point. Hence, Conjecture 3.2.7 predicts a single critical point for the
superpotential fP when restricted to a generic fibre of the equivariant structure map e :
MP → T . Let’s verify that this does indeed hold.

The Levi subgroup LP ⊆ P is

LP =

{[
a 0
0 B

]
∈ G

}
,
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and Z(LP ) is the subgroup of diagonal matrices {diag(a, a−1, a−1, . . . , a−1) | a ∈ C×}.
The parabolic subgroup is WP = 〈s2, . . . , sn〉 ⊆ W and the longest element in WP is wP0 .

Using the reduced expressions

wP0 = s2s3s2 · · · sn · · · s2, and w0 = snsn−1snsn−2sn−1sn · · · sn,

we find that
w−1
P = w0w

P
0 = sn · · · s1.

As any two reduced expressions are related by a sequence of braid relations, this last expres-
sion implies that R(w−1

P ) = {(n, . . . , 1)}. Let i = (n, . . . , 1) ∈ R(w−1
P ) be this unique reduced

expression.
The parabolic P ∗ containing B+ and w0LPw

−1
0 is such that J(P ∗) = {1, . . . , n − 1}.

Hence, wP
∗

0 is the longest element in the permutation group 〈s1, . . . sn−1〉 ∼= Sn−1.
Using Lemma 3.3.6 we compute f tP , t ∈ Z(LP ), with respect to the FZ-parameterisation

in the direction i. We have

fP (ji(t, a)) = a1 + . . .+ an +
∑

i/∈J(P ∗)

αi∗(t)
∆wP

∗
0 si$i,w0$i

(xi(a))

∆$i,w0$i(xi(a))

= a1 + . . .+ an + α1(t)

(
∆wP

∗
0 sn$n,w0$n

(xi(a))

∆$n,w0$n(xi(a))

)

Identifying generalised minors with matrix minors (see Section 1.3) we find

∆wP
∗

0 sn$n,w0$n
(xi(a)) = ∆12···(n−1)(n+1),23···(n+1)(xi(a))

and
∆$n,w0$n(xi(a)) = ∆12···n,23···(n+1)(xi(a)).

Using induction on n, it’s straightforward to see that

xi(a1, . . . , an) =


1 an 0 · · · 0
0 1 an−1 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 a1

0 0 · · · 0 1


Hence, ∆12···n,23···(n+1)(xi(a)) = 1 and, since ∆12···n,23···(n+1) is the determinant of the top right
n× n matrix,

∆12···n,23···(n+1)(xi(a)) = a1 · · · an
Hence,

fP (ji(t, a)) = a1 + . . .+ an +
α1(t)

a1 · · · an
. (3.4.2)
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Remark 3.4.1. The superpotential fP computed in (3.4.2) is precisely the well-known su-
perpotential associated to projective space [30].

By Conjecture 3.2.7, the quantum cohomology of PnC�LT (which is a point) is obtained
by restricting (3.4.2) to a fibre of e : MP → B−/N− = T and computing the Jacobian ring.
We will now compute determine e with respect to the FZ-parameterisation ji.

Let u ∈ Nw−1
P

+ , t ∈ Z(LP ). Then, ji(t, u) = tη−1(u) and the image of ji(t, u) under e is
te(η−1(u)). Observe that e(η−1(u)) = π0(η−1(u)).

Let η(x) = u so that x = τ(u)wPu. We saw in the proof of Lemma 3.3.5 that

w−1
0 uTwP

∗
0 = w−1

0 xTw0w
−1
0 τ(u)−Tw0.

As τ(u) ∈ N+(wP ) we obtain w−1
0 τ(u)−Tw0 ∈ N+(w−1

P ). Therefore,

π0(w−1
0 uTwP

∗
0 ) = π0(w−1

0 xTw0) = w−1
0 π0(x)w0

In particular, we can compute

e(η−1(u)) = w0π
0(w−1

0 uTwP
∗

0 )w−1
0 .

We will require to use the fact that we are in a special situation, namely that P is very
large.

Proposition 3.4.2. Let u ∈ Nw−1
P

+ . Then, e(η−1(u)) is uniquely determined by the diagonal

entries of the matrix w−1
0 uTwP

∗
0 .

Proof. We recall the notation immediately preceding the statement of the Proposition. We
have

w−1
0 uTwP

∗
0 = w−1

0 xTw0w
−1
0 τ(u)−Tw0

and w−1
0 τ(u)−Tw0 ∈ N+(w−1

P ) = N+(wP ∗). The subgroup

N+(wP ∗) =
∏

α∈R+ s.t.
w−1
P∗ (α)∈R−

imxα =
n∏
i=1

imxαin

consists of unipotent matrices n ∈ N+ of the form

n =



1 0 0 · · · · · · ∗
0 1 0 · · · · · · ∗
0 0 1 · · · · · · ∗
...

...
...

. . . . . .
...

0 0 0 · · · · · · ∗
0 0 0 · · · · · · 1


(3.4.3)
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Write x = vs ∈ N−T , with v ∈ N−, s ∈ T . We have

w−1
0 uTwP

∗
0 =

(
w−1

0 svT s−1w0

)
w−1

0 sw0

(
w−1

0 τ(u)−Tw0

)
As w−1

0 τ(u)−Tw0 is a matrix of the form (3.4.3) and w−1
0 svT s−1w0 ∈ N−, the element

w−1
0 uTwP

∗
0 is a matrix of the form

d1(u) 0 0 · · · ∗
∗ d2(u) 0 · · · ∗
∗ ∗ d3(u) · · · ∗
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


Projecting onto the first n diagonal entries allows us to define a morphism of varieties

g : N
w−1
P

+ −−−→ T

u 7−−−→ g(u) := diag(d1(u), . . . , dn(u), (d1(u) · · · dn(u))−1)

Then, by construction, we have

e(η−1(u)) = w0g(u)w−1
0 .

We illustrate the proof of the above Proposition with an example.

Example 3.4.3. Consider G = SL4(C), i = (3, 2, 1). Then,

w−1
0 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 and wP
∗

0 =


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 −1


Then, for

u = xi(a1, a2, a3) =


1 a3 0 0
0 1 a2 0
0 0 1 a1

0 0 0 1


we have

w−1
0 uTwP

∗
0 =


−a1 0 0 1

1 −a2 0 0
0 1 −a3 0
0 0 1 0
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We compute

η−1(u) =


a−1

1 a−1
2 a−1

3 0 0 0
1 a3 0 0
0 1 a2 0
0 0 1 a1


If we let ty = diag(−a1,−a2,−a3,−(a1a2a3)−1), then we have

e(η−1(u)) = w0yw
−1
0 .

A straightforward generalisation of Example 3.4.3 provides the following computation of
e restricted to the FZ-parameterisation.

Proposition 3.4.4. Let i be the unique reduced expression for w−1
P , where P is the standard

parabolic subgroup with J(P ) = {2, . . . , n}. Let ji be the FZ-parameterisation in the direction
i, e : MP → T the equivariant structure map. Then,

e(ji(t, a1, . . . , an)) = t diag((a1 · · · an)−1, an, an−1, . . . , a1) ∈ T

Hence, we are comforted to see that the intersection of the fibres of the quantum structure
map q and the equivariant structure map e is a single point.

Theorem 3.4.5. Conjecture 3.2.7 holds for symplectic reductions of LG/LP ∼= PnC.

Remark 3.4.6. If we swap the role of G and LG, so that LG = SLn+1(C), then Conjecture
3.2.7 states that we expect |Z(LG)| critical points of fP . Indeed, the computation can
proceed as above, and fP (in the FZ-parameterisation) is equal to the expression (3.4.2).

In this situation, determining the equivariant structure map with respect to the FZ-

parameterisation is similar to Proposition 3.4.2: for any u ∈ N
w−1
P

+ , e(η−1(u)) ∈ T ⊆
PGLn+1(C) is determined by the diagonal entries of w−1

0 uTwP
∗

0 . We compute, for t ∈ Z(LP ),

u ∈ Nw−1
P

+ ,
e(ji(t, u)) = t diag((a2

1a2 · · · an)−1, ana
−1
1 , . . . , a2a

−1
1 , 1) ∈ T

Here we are choosing the unique representative of elements in T = LT/Z(LG) whose last
diagonal entry is 1.

Then, the intersection of the fibres of q−1(t) and e−1(s), where t = diag(c, 1, . . . , 1)Z ∈
Z(LP ), s = diag(c1, . . . , cn, 1)Z ∈ T , can be identified with the set{

a ∈ C× | an+1 =
c

c1 · · · cn

}
.

Hence, we have n + 1 = |Z(LT )| critical points of the restriction of f tP to a fibre of the
equivariant structure map.
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The quantum cohomology of polygon spaces

In this section we will outline a new approach to computing the quantum cohomology of the
class of weight varieties realised as symplectic reductions of the complex Grassmannian of
2-planes GrC(2, n+ 1): these are the polygon spaces Pr,n+1 (Example 2.2.4).

Let P ⊆ SLn+1(C) be a standard parabolic subgroup such that J(P ) = {1, 3, . . . , n+ 1}
or J(P ) = {1, 2, . . . , n− 2, n}. Recall that, in the former case LG/LP ∼= GrC(2, n+ 1) and,
in the latter case LG/LP is isomorphic to the Grassmannian of n-planes in Cn+1 (by duality,
this is the same as Gr2((Cn+1)∗)).

Let P ⊆ G be the parabolic subgroup

P =

{[
A B
0 C

]
∈ G | A is 2× 2

}
with Levi subgroup

LP =

{[
A 0
0 B

]
∈ P

}
and Z(LP ) ∼= Gm. Therefore, we are considering the case J(P ) = {1, 3, . . . , n}. The
parabolic subgroup P ∗ is the standard parabolic subgroup such that J(P ∗) = {1, 2, . . . , n−
2, n}. The parabolic subgroup WP = 〈s1, s3, . . . , sn〉 ⊆ W and is isomorphic to a product of
permutation groups S2 × Sn−1. The longest element in WP is wP0 .

By Theorem 2.5.6, any symplectic reduction of GrC(2, n+1) ∼= LG/LP is a polygon space
Pr,n+1. Here r ∈ Rn+1

>0 is such that |r| corresponds to the Kahler form on GrC(2, n) defined
via its realisation as a symplectic reduction of complex affine space (Example 2.2.7). In this
setting, we are considering Rn+1 ∼= h′, where H ⊆ H ′ ⊆ U(n + 1) is the maximal diagonal
torus. Since G = SLn+1(C), we project u(n+ 1) along R(1, . . . , 1) onto su(n+ 1) and write
r̂ ∈ h for the image of r under this projection. In this way, we can associate to r the element
t(r) ∈ T where, if r̂ = (r̂1, . . . , r̂n+1), we define

t(r) := diag(exp(2πir̂1), . . . , exp(2πir̂1)) ∈ T ⊆ SLn+1(C).

We now proceed to describe our main conjecture: an explicit description of the quantum
cohomology of Pr,n. First, we require the following technical result.

Lemma 3.4.7. w−1
P ∗ = w0w

P ∗
0 = s2 · · · sns1 · · · sn−1.

Proof. Consider the following reduced expressions

w0 = s1s2s1s3s2s1 · · · sn · · · s1, and wP
∗

0 = s1s2s1 · · · sn−2 · · · s1sn

For i = 1, . . . , n, write wi = sisi−1 · · · s2s1, so that w0 = w1w2 · · ·wn. First we note that, for
any n,

wnw1w2 · · ·wn−2 = w1 · · ·wn−3snsn−1. (3.4.4)
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Indeed, proceeding by induction we find

sn(wn−1w1 · · ·wn−3)wn−2 = sn(w1 · · ·wn−4)sn−1sn−2wn−2

= snw1 · · ·wn−4sn−1wn−3

w1 · · ·wn−3snsn−1

The last equality follows because sjwi = wisj, whenever j > i+ 1.
Thus, assuming the result holds for n− 1 we have,

w0w
P ∗

0 = w1w2 · · ·wnw1w2 · · ·wn−2sn

= w1 · · ·wn−1w1 · · ·wn−3snsn−1sn, by (3.4.4),

= w1 · · ·wn−1w1 · · ·wn−3sn−1snsn−1

= s2 · · · sn−1s1 · · · sn−2snsn−1, by induction,

= s2 · · · sns1 · · · sn−1.

Hence, w−1
P = sn−1 · · · s1sn · · · s2.

Let i = (n − 1, n − 2, . . . , 1, n, n − 1, . . . , 2) ∈ R(w−1
P ). Using Lemma 3.3.6 we compute

f tP , t ∈ Z(LP ), with respect to the FZ-parameterisation in the direction i. By Lemma 3.3.6,
we have

fP (ji(t, a)) = a1 + . . .+ an +
∑

i/∈J(P ∗)

αi∗(t)
∆wP

∗
0 si$i,w0$i

(xi(a))

∆$i,w0$i(xi(a))

= a1 + . . .+ an + α2(t)

(
∆wP

∗
0 sn−1$n−1,w0$n−1

(xi(a))

∆$n−1,w0$n−1(xi(a))

)

Identifying generalised minors with matrix minors (see Section 1.3), and using

wP
∗

0 = s1s2s1s3 · · · sn−2 · · · s1sn,

we find
∆wP

∗
0 sn−1$n−1,w0$n−1

(xi(a)) = ∆2···(n−1)(n+1),3···(n+1)(xi(a))

and
∆$n−1,w0$n−1(xi(a)) = ∆1···(n−1),3···n(n+1)(xi(a)).

Now,

xi(a1, . . . , an−1, b1, . . . , bn−1) = xn−1(a1) · · ·x1(an−1)xn(b1) · · ·x2(bn−1)
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Using

xn−1(a1) · · ·x1(an−1) =



1 0 0 0 · · · 0
0 1 an−1 0 · · · 0
0 0 1 an−2 · · · 0
...

...
...

. . . . . .
...

0 0 0 0 1 a1

0 0 0 0 0 1


and

xn(b1) · · ·x2(bn−1) =



1 bn−1 0 · · · · · · 0
0 1 bn−2 · · · · · · 0

0 0 1
. . . · · · 0

...
...

...
. . . b1 0

0 0 0 · · · 1 0
0 0 0 · · · 0 1


we find

xn−1(a1) · · · x1(an−1)xn(b1) · · ·x2(bn−1) =



1 an−1 an−1bn−1 0 · · · 0
0 1 an−2 + bn−1 an−2bn−2 · · · 0
...

...
. . . . . .

...
...

0 0 0 0 · · · a1b1

0 0 0 0 · · · b1

0 0 0 0 · · · 1


In particular,

∆1···(n−1),3···(n+1)(xi(a, b)) = a1 · · · an−1b1 · · · bn−1.

An induction argument gives

∆2···(n−1)(n+1),3···(n+1)(xi(a, b)) = a1 · · · an−2 + a1 · · · an−3bn−1 + · · ·+ a1b3 · · · bn−1 + b2 · · · bn−1

Hence,

fP (ji(t, a, b)) = a1 + . . .+ an−1 + b1 + . . .+ bn−1

+ α2(t)
a1 · · · an−2 + a1 · · · an−3bn−1 + · · ·+ b2 · · · bn−1

a1 · · · an−1b1 · · · bn−1

(3.4.5)

This expression for the superpotential is related to previous mirror constructions of [49]
and [10] in the following way.

First we introduce the definition of a Gelfand-Tsetlin quiver.
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Definition 3.4.8. Let P ⊆ G be a standard parabolic subgroup. A Gelfand-Tsetlin quiver
of shape P is a quiver GTP with underlying set of vertices VP = {α ∈ R+ | w−1

P (α) ∈ −R+},
and arrows defined by

α β if and only if β = α + αi, for some i ∈ I.

We include two additional vertices vh, vt and two additional arrows

α13 vh and vh α2,n+1.

For an arrow a ∈ GTP , we define h(a) to be the head of a, t(a) to be the tail of a.

For P such that J(P ) = {1, 3 . . . , n}, the Gelfand-Tsetlin quivers take the form

vh α13 α14 · · · α1,n+1

α23 α24 · · · α2,n+1

vt

Given GTP , a Gelfand-Tsetlin quiver of shape P , where J(P ) = {1, 3, . . . , n}, we define
a family of monomial transformations of (C×)2(n−1). Let t ∈ Z(LP ) and q = α2(t) ∈ C×. Let
(a1, . . . , an−1, b1, bn−1) denote the standard coordinates on (C×)2(n−1). Associate the variables
z1i, z2i, i = 1, . . . , n− 1, to the vertices of Γ as follows

q z1,n−1 z1,n−2 · · · z11

z2,n−1 z2,n−2 · · · z21

1

and define the following monomial transformation of (C×)2(n−1):

z1i :=
q

an+2−i · · · an−1

, i = 3, . . . , n− 1,

z2i := b1 · · · bi, i = 3, . . . .n− 2,

z2,n−1 :=
q

an−1bn−1

.

(3.4.6)

The following result is a generalisation of Givental’s mirror construction for the complete
flag variety [49], and is similar to an observation of Marsh-Rietsch [105]. An analogous
construction of the superpotential given a Gelfand-Tsetlin quiver of type P was given in [10]
(see also [35] for a physical derivation).
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Proposition 3.4.9. Let P ⊆ SLn+1(C) be a standard parabolic subgroup such that J(P ) =
{1, 3, . . . , n} with Levi subgroup P containing the maximal torus T of diagonal matrices. Let
i = (n − 1, . . . , 1, n, . . . , 2) ∈ R(w−1

P ). Composing the FZ-parameterisation in the direction
i with the inverse of the monomial transformation (3.4.6), the superpotential fP takes the
form

fp =
∑

a∈GTP

zh(a)

zt(a)

Remark 3.4.10. Given a Gelfand-Tsetlin quiver of an arbitrary standard parabolic sub-
group P , we conjecture that there exists a monomial transformation on (C×)`(wP ) giving rise
to a similar description of the superpotential.

We now compute the equivariant structure map e : MP → T with respect to the FZ-
parameterisation in the direction i.

Let u ∈ Nw−1
P

+ , t ∈ Z(LP ). Then, ji(t, u) = tη−1(u) and the image of ji(t, u) under e is
te(η−1(u)). Observe that e(η−1(u)) = π0(η−1(u)).

Let η(x) = u so that x = τ(u)wPu. We saw in the proof of Lemma 3.3.5 that

w−1
0 uTwP

∗
0 = w−1

0 xTw0w
−1
0 τ(u)−Tw0.

As τ(u) ∈ N+(wP ) we obtain w−1
0 τ(u)−Tw0 ∈ N+(w−1

P ). Therefore,

π0(w−1
0 uTwP

∗
0 ) = π0(w−1

0 xTw0) = w−1
0 π0(x)w0

In particular, we can compute

e(η−1(u)) = w0π
0(w−1

0 uTwP
∗

0 )w−1
0 .

Proposition 3.4.11. Let u ∈ Nw−1
P

+ . Then, e(η−1(u)) is uniquely determined by the diagonal

entries of the matrix w−1
0 uTwP

∗
0 and u−1w−1

P .

Proof. We recall the notation immediately preceding the statement of the Proposition. The
proof is similar to the proof of Proposition 3.4.2. We have

w−1
0 uTwP

∗
0 = w−1

0 xTw0w
−1
0 τ(u)−Tw0

and w−1
0 τ(u)−Tw0 ∈ N+(w−1

P ) = N+(wP ∗). The subgroup

N+(wP ∗) =
∏

α∈R+ s.t.
w−1
P∗ (α)∈R−

imxα =
n−1∏
i=1

imxαi,n ×
n−1∏
i=1

imxαi,n−1
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consists of unipotent matrices n ∈ N+ of the form

n =



1 0 0 · · · ∗ ∗
0 1 0 · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · ∗ ∗
0 0 0 · · · 1 0
0 0 0 · · · 0 1


(3.4.7)

Write x = vs ∈ N−T , with v ∈ N−, s ∈ T . In particular, s = e(η−1(u)). We have

w−1
0 uTwP

∗
0 =

(
w−1

0 svT s−1w0

)
w−1

0 sw0

(
w−1

0 τ(u)−Tw0

)
As w−1

0 τ(u)−Tw0 is a matrix of the form (3.4.7) and w−1
0 svT s−1w0 ∈ N−, the element

w−1
0 uTwP

∗
0 is a matrix of the form

d1(u) 0 0 · · · 0 ∗ ∗
∗ d2(u) 0 · · · 0 ∗ ∗
∗ ∗ d3(u) · · · 0 ∗ ∗
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · ∗ ∗ ∗


Consider the map that projects onto the first n− 1 diagonal entries of w−1

0 uTwP
∗

0

h : N
w−1
P

+ −−−→ (C×)n−1

u 7−−−→ h(u) := (d1(u), . . . , dn−1(u))

Then, by construction, we have

w0 diag(h(u), 1, 1)w−1
0 = (1, 1, s3, . . . , sn+1),

where s = diag(s1, . . . , sn+1) ∈ T .

The diagonal entries s1, s2 can be determined by the following argument. For u ∈ Nw−1
P

+ ,
and x = vs such that η(x) = u, we have

u−1w−1
P = η(u)−1τ(u) = (s−1v−1s)s−1τ(u) ∈ N−TN+(wP ).

By a similar analysis as above, we have u−1w−1
P is a matrix whose top left 2× 2 block is of

the form [
s−1

1 0
∗ s−1

2

]
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Hence, the map that projects onto the first two diagonal entries of u−1w−1
P

g = (g1, g2) : N
w−1
P

+ −−−→ (C×)2

determines the remaining diagonal entries of s = e(η−1(u)).
Finally, define

f : N
w−1
P

+ −−−→ T

u 7−−−→ diag(g1(u)−1, g2(u)−1, 1 . . . , 1)w0 diag(h(u), 1, 1)w−1
0

By construction, f(u) = e(η−1(u)).

We highlight the proof of Proposition 3.4.11 with an example.

Example 3.4.12. Let G = SL5(C) and i = (3, 2, 1, 4, 3, 2) ∈ R(w−1
P ). Then,

w−1
0 =


0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

 wP
∗

0 =


0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 0 1 0

 w−1
P =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 0 0 0 0
0 −1 0 0 0


Let

u = xi(a1, a2, a3, b1, b2, b3) =


1 a3 a3b3 0 0
0 1 a2 + b3 a2b2 0
0 0 1 a1 + b2 a1b1

0 0 0 1 b1

0 0 0 0 1


Then,

w−1
0 uTwP

∗
0 =


a1b1 0 0 1 −b1

−(a1 + b2) a2b2 0 0 1
1 −(a2 + b3) a3b3 0 0
0 1 −a3 0 0
0 0 1 0 0


Projecting onto the first three diagonal entries gives h(u) = (a1b1, a2b2, a3b3).

Also,

u−1w−1
P =


a1a2a3 0 1 −a3 a2a3

−(a1a2 + a1b3 + b2b3) b1b2b3 0 1 −(a2 + b3)
a1 + b2 −b1b2 0 0 1
−1 b1 0 0 0
0 −1 0 0 0


Projecting onto the first two diagonal entries gives g(u) = (a1a2a3, b1b2b3).
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Then, the Proposition shows that e(η−1(u)) is the matrix

diag((a1a2a3)−1, (b1b2b3)−1, 1, 1, 1) · w0 diag(a1b1, a2b2, a3b3, 1, 1)w−1
0

= diag((a1a2a3)−1, (b1b2b3)−1, a3b3, a2b2, a1b1) ∈ T,

in agreement with

η−1(u) =


(a1a2a3)−1 0 0 0 0
a1a2+a1b3+b2b3
a1a2a3b1b2b3

(b1b2b3)−1 0 0 0

1 a3 a3b3 0 0
0 1 a2 + b3 a2b2 0
0 0 1 a1 + b2 a1b1


Proposition 3.4.11 allows us to determine an explicit formula for e in the FZ-parameterisation.

Theorem 3.4.13. Let i = (n − 1, n − 2, . . . , 1, n, n − 1, . . . , 2) ∈ R(w−1
P ), where P ⊆ G is

the standard parabolic with J(P ) = {1, 3 . . . , n}. Let ji be the FZ-parameterisation in the
direction i, e : MP → T the equivariant structure map. Then,

e(ji(t, a1, . . . , an−1, b1, . . . , bn−1))

=t ·
n+1∏
j=3

(
α∨1j(an+2−j)α

∨
2j(bn+2−j)

)
∈ T.

Proof. This follows from a calculation similar to Example 3.4.12.

Corollary 3.4.14. Fix t ∈ Z(LP ).

(a) For any j = 1, . . . , n,

$j (e(ji(t, a1, . . . , an−1, b1, . . . , bn−1))) =


$1(t)(a1 · · · an−1)−1, if j = 1,

$2(t)(a1 · · · an−1b1 · · · bn−1)−1, if j = 2,

$j(t)an+2−jbn+2−j, if j = 3, . . . , n.

(b) Let c1, . . . , cn ∈ C× be generic. Then,

C[a±1 , . . . , a
±
n−1, b

±
1 , . . . , b

±
n−1]

〈ci −$i(e(ji(t, a, b)))〉i∈I
∼=

C[b±1 , . . . , b
±
n−1]

〈$1(t)c2b1 · · · bn−1 −$2(t)c1〉

Quantum cohomology of polygon spaces in low rank

In this section we will verify Conjecture 3.2.7 for polygon spaces Pr,n with n = 4, 5.
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Quantum cohomology of the moduli space of 4-gons Pr,4
Let n+1 = 4. Let P ⊆ SL4(C) be the standard parabolic subgroup of upper block-triangular
matrices such that J(P ) = {1, 3}; then P = P ∗. Therefore, Z(LP ) = {diag(a, a, a−1, a−1) | a ∈
C×}. Let i = (2, 1, 3, 2) ∈ R(w−1

P ). With respect to the FZ-parameterisation in the direction
i, (3.4.5) implies that the superpotential takes the form

fP (t, a1, a2, b1, b2) = a1 + a2 + b1 + b2 + α2(t)
a1 + b2

a1a2b1b2

, t ∈ Z(LP ), a1, a2, b1, b2 ∈ C×.

Theorem 3.4.13 shows that, with respect to the FZ-parameterisation, the equivariant
structure map e takes the form

e(t, a1, a2, b1, b2) = t diag((a1a2)−1, (b1b2)−1, a2b2, a1b1).

We trivialise T as follows

T −−−→ (C×)3

t 7−−−→ ($1(t), $2(t), $3(t))

Then, for c = (c1, c2, c3) ∈ (C×)3, and t = diag(q, q, q−1, q−1) ∈ Z(LP ), the intersection
of the fibres e−1(c) ∩ q−1(t) is described by the equations

q

a1a2

= c1,
q2

a1a2b1b2

= c2,
q

a1b1

= c3

Hence, we can eliminate, say, a1, a2 and b2 and the restriction of the superpotential f tP to
the fibre e−1(c) is

f tP (b1) =
q

c3b1

+
c3b1

c1

+ b1 +
c1q

c2b1

+ c2

(
q

c3b1

+
c1q

c2b1

)
Here we have used α2(t) = q2. Hence, for generic c, we obtain

Jac(f tP ) ∼=
C[b]

(b2 − q)
.

Recall from Example 2.2.4 that a weight variety constructed as the symplectic reduction
of Gr(2, 4) is diffeomorphic to P1

C. Hence, our construction recovers the well-known quantum
cohomology ring of P1

C.

Theorem 3.4.15. Let X = GrC(2, 4) = SL4(C)/P be the complex Grassmannian of 2-
planes, (MP , FP ) the Rietsch mirror family. Let e : MP → LT be the equivariant structure
map. Let Pr,4, r ∈ Z4

>0, be the space of 4-gons realised as the symplectic reduction of X.
Then, the quantum cohomology of Pr,4 can be computed as the Jacobian ring of the restriction
of fP to a generic fibre of e. In particular, Conjecture 3.2.7 is verified.
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Quantum cohomology of the moduli space of 5-gons Pr,5
Let n + 1 = 5. Let P ⊆ SL5(C) be the standard parabolic subgroup of upper block-
triangular matrices such that J(P ) = {1, 3, 4}; then P ∗ is the parabolic subgroup such
that J(P ∗) = {1, 2, 4}. Therefore, Z(LP ) = {diag(a, a, a−1, a−1, a−1) | a ∈ C×}. Let i =
(3, 2, 1, 4, 3, 2) ∈ R(w−1

P ). With respect to the FZ-parameterisation in the direction i, (3.4.5)
implies that the superpotential takes the form

fP (t, a1, a2, a3, b1, b2, b3) = a1 + a2 + a3 + b1 + b2 + b3 + α2(t)
a1a2 + a1b3 + b2b3

a1a2a3b1b2b3

for t ∈ Z(LP ), a1, a2, a3, b1, b2, b3 ∈ C×.
As above, we trivialise T using the fundamental weights

T −−−→ (C×)4

t 7−−−→ ($1(t), $2(t), $3(t), $4(t))

Theorem 3.4.16. Let X = GrC(2, 5) = SL4(C)/P be the complex Grassmannian of 2-
planes, (MP , FP ) the Rietsch mirror family. Let e : MP → LT be the equivariant structure
map. Let Pr,5, r ∈ Z4

>0, be the space of 4-gons realised as the symplectic reduction of X. Let
r ∈ {(1, 1, 1, 1, 2), (1, 2, 2, 3)}. Then, for the quantum cohomology of Pr,5 can be computed as
the Jacobian ring of the restriction of fP to a generic fibre of e.

3.5 Future directions

It would be interesting to extend the methods developed in this chapter to further classes of
weight varieties in type A. One particular class where Conjecture 3.2.7 could be verified is
for certain symplectic reductions of complete flag varieties LG/LB+.

Let λ ∈ t∗+ be generic and Oλ ⊆ sln the corresponding coadjoint orbit. By mapping a
complete flag to its 1-dimensional constituent, we obtain a bundle

Oλ −−−→ Pn−1
C

This bundle is a SLn(C)-equivariant symplectic fibration (see [58]) with fibre being a complete
flag variety for SLn+1(C). The Minimal Coupling Theorem (see [58, Chapter 4]) states that
if the fibres F of an equivariant symplectic fibration X → B are small enough then the
symplectic reduction of X at µ, for an open subset of µ’s, is a bundle over the symplectic
reduction of B with fibre F . In this situation, ‘small enough’ means that λ is in a certain open
neighbourhood of the line through the first fundamental weight. Hence, as the reduction of
Pn−1
C is a point, this implies that the reduction of Oλ is a complete flag variety for SLn−1(C).

Therefore, for λ close enough to $1 we expect that the approach developed in this thesis
to compute the quantum cohomology of weight varieties of SLn(C) will recover the quantum
cohomology of a complete flag variety for SLn−1(C). The quantum cohomology rings of
complete flag varieties are known by [50], allowing us to verify our computation.
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Chapter 4

Crystals

This Chapter investigates the appearance of combinatorial structures from representation
theory in the mirror symmetry for flag varieties. Let G be a reductive complex algebraic
group with Lie algebra g. Associated to g is the Drinfeld-Jimbo quantised universal en-
veloping algbra Uq(g), a Hopf algebra deformation of the universal enveloping algebra U(g).
The representation theory of Uq(g) is similar to the representation theory of g, and admits
sufficient extra structure to be able to better understand the combinatorial representation
theory of g. The key is Lusztig’s canonical basis B of the positive part of Uq(g) [99]. B is
canonical in the sense that it gives rise to canonical bases of all finite dimensional simple
Uq(g)-modules via the standard (co)Verma module construction.

Understanding the basis B itself is complicated but there exist several useful parameter-
isations of B. For i, a reduced expression for the longest element w0 in the Weyl group of
g, the string parameterisation ci of Littelmann [95] provides a parameterisation of B by the
lattice points in a rational polyhedral cone Ci ⊆ R`(w0), the string cone (in the direction i).
The extended string cone C i ⊆ Rrk(g)+`(w0) is a modification of Ci that ‘remembers’ the way
in which B interacts with the finite dimensional simple Uq(g)-modules.

The canonical basis B gives rise to a rich combinatorial structure known as a Kashi-
wara crystal [77]. These combinatorial objects model the representation theory of g and
provide effective approaches to studying tensor product multiplicities. Birational analogues
of Kashiwara crystals, known as geometric crystals, were introduced by Berenstein-Kazhdan
[12]. From a geometric crystal, one can construct a Kashiwara crystal via tropicalisation.
For us, tropicalisation is a functor Trop from the class V of positive varieties (birational to
algebraic tori) to Set such that, if f : X → A1 is a rational function, X ∈ V birational to
the algebraic torus S, then Trop(f) : X∨(S)→ Z is a piecewise linear function.

A remarkable fact is that the Rietsch mirror family (MP , fP ) introduced in Section 3.1
is part of a geometric crystal. This has been observed in [93], [94], and used to prove
mirror conjectures of Rietsch [115]. Our main result, Theorem 4.4.5, uses a family of non-
standard parameterisation ji of MP , i a reduced expression of w0, to explicitly show that
the tropical locus {Trop(fP ) ≥ 0} can be identified with the lattice points in the extended
string cone C i(Z). Specifically, with respect to the parameterisation ji, we recover precisely
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the inequalities defining C i.
In Section 4.1 we recall background from the theory of quantised universal enveloping

algebras. Section 4.2 introduces Lustig’s canonical basis B, its consequences for representa-
tion theory and a brief account of the role of B in determining combinatorial tensor product
multiplicity formulae. We define several parameterisations of B including the the family of
string parameterisations due to Littelmann. We conclude this section by introducing the
extended string cone C i and the λ-inequalities that define it. In Section 4.3, we give a
brief account of Kashiwara’s theory of crystals and their geometric counterparts developed
by Berenstein-Kazhdan. In this section we develop the tool of tropicalisation, realised as
a functor from a certain class of varieties to Set. Section 4.4 introduces a non-standard
parameterisation of the Rietsch mirror (MB, fB), and we state and prove our main result
Theorem 4.4.5. We conclude with a discussion illuminating intriguing similarities between
the hierarchy of a family of toric degenerations on the A-model side (introduced in [113])
and the crystal structure obtained in Theorem 4.4.5.

4.1 Some quantum algebra

In this section we recall some of the structure theory of quantised universal enveloping
algebras associated to the Lie algebra g of a reductive complex algebraic group G and their
representation theory.

Convention 4.1.1. Throughout this section G will be a reductive complex algebraic group
with associated root datum (X,R,X∨, R∨) and Lie algebra g. We adopt the conventions
and notation from Section 1.3. We will assume that X = Π is the lattice of integral weights.

The Cartan matrix [cij]i,j∈I , where cij = 〈αj, α∨i 〉, i, j ∈ I, is symmetrisable. Let di ∈ Z>0,
i ∈ I, be such that dicij = djcji. We assume that the integers {di}i∈I are pairwise relatively
prime.

Let C(q) be the field of rational functions. Given n ∈ Z we define

[n]q :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−(n−3) + q−(n−1) ∈ C(q).

Set [0]q! := 1, [n]q! := [n]q[n− 1]q · · · [1]q, for n > 0, and[
m
n

]
q

:=
[m]q!

[n]q![m− n]q!
, 0 ≤ n ≤ m.

Quantised universal enveloping algebras

Definition 4.1.2. The (Drinfeld-Jimbo) quantised universal enveloping algebra associated
to g, Uq(g), or simply U when there is no risk of confusion, is the associative C(q)-algebra
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with unit generated by the elements Ei, Fi, i ∈ I, and Kh, h ∈ X∨, such that the function

C(q)[X∨] −−−→ Uq(Ψ(G))

eh 7−−−→ Kh

is a homomorphism of (commutative, unital) C(q)-algebras (here C(q)[X∨] is the group
algebra of X∨ over C(q)), and such that the following relations hold:

(1) KhEiK−h = q〈αi,h〉Ei, for i ∈ I, h ∈ X∨,

(2) KhFiK−h = q−〈αi,h〉Fi, for i ∈ I, h ∈ X∨,

(3) EiFj − FjEi = δij
Kdiα∨i

−K−diα∨i
qdi−q−di , for i, j ∈ I,

(4) for every i 6= j, ∑
r+s=1−cij

(−1)rE
(r)
i EjE

(s)
i =

∑
r+s=1−cij

(−1)rF
(r)
i FjF

(s)
i = 0.

Here E
(r)
i = Ei/[r]qdi ! and F

(r)
i = Fi/[r]qdi ! are the q-divided powers.

We write U0(g), or simply U0 when there is no risk of confusion, for the image of the
homomorphism C(q)[X∨] → Uq(Ψ(G)) described above. A standard argument shows that
U0 ∼= C(q)[X∨].

Denote by U+
q (g) (resp. U−q (g)) the C(q)-subalgebra generated by Ei, i ∈ I, (resp. Fi,

i ∈ I). When there is no risk of confusion we write U+ (resp. U−).
We write Uq(g)≥0 (resp. Uq(g)≤0) to be the subalgebra generated by Ei, i ∈ I, and Kh,

h ∈ X∨, (resp. Fi, i ∈ I, and Kh, h ∈ X∨). When there is no risk of confusion we write U≥0

(resp. U≤0).
For any i ∈ I, we define Uq(g)i to be the C(qdi)-subalgebra generated by Ei, Fi, K±diα∨i .

Uq(Ψ(G))i is a subalgebra isomorphic to Uq(sl2) (this follows from Proposition 4.1.5 below).
When there is no risk of confusion we write Ui.

Define, for every i ∈ I, h ∈ X∨,

deg(Kh) = 0, and deg(Ei) = − deg(Fi) = αi.

The defining relations of Uq(g) are homogeneous and Uq(g) is a Q-graded algebra. Further-
more, there is the root space decomposition

Uq(g) =
⊕
α∈Q

Uq(g)α,

where
Uq(g)α = {u ∈ Uq(g) | KhuK−h = q〈h,α〉u, for all h ∈ X∨}.

When there is no risk of confusion we write Uα in place Uq(g)α.
We will also make use of the following involutions:
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(i) the bar involution, u 7→ u, is the C-algebra automorphism of Uq(Ψ(G)) such that

q = q−1, Ei = Ei, F i = Fi, Kh = K−h. (4.1.1)

An element u ∈ Uq(g) is bar-invariant if u = u.

(ii) the C(q)-algebra automorphism ω : Uq(g)→ Uq(g), uniquely determined by

ω(Ei) = Fi, ω(Fi) = Ei, ω(Kh) = K−h, (i ∈ I, h ∈ X∨). (4.1.2)

(iii) The C(q)-algebra antiautomorphism ι : Uq(g)→ Uq(g), uniquely determined by

ι(Ei) = Ei, ι(Fi) = Fi, ι(Kh) = K−h, (i ∈ I, h ∈ X∨). (4.1.3)

Observe that ι is Q-graded.

Remark 4.1.3. The quantised universal enveloping algebra U = Uq(g) can be given the
structure of a non-commutative, non-cocommutative Hopf algebra (U,∆, S, ε), where

∆(Ei) = Ei⊗ 1 +Kdiα∨i
⊗Ei, ∆(Fi) = Fi⊗K−diα∨i + 1⊗Fi, ∆(Kh) = Kh⊗Kh, (4.1.4)

S(Ei) = −K−diα∨i Ei, S(Fi) = −FiKdiα∨i
, S(Kh) = K−h, (4.1.5)

ε(Kh) = 1, ε(Ei) = ε(Fi) = 0, (4.1.6)

for i ∈ I, h ∈ X∨. With this structure of a Hopf algebra Uq(g) is a Hopf algebra
deformation of U(g), the universal enveloping algebra associated to g (equipped with its
usual (noncommutative, cocommutative) Hopf algebra structure).

As a Hopf algebra Uq(g) is a deformation of U(g) as follows: in the specialisation q → 1,
the Hopf algebra structure given to Uq(g specialises to the Hopf algebra U(g). Details can
be found in [66, Chapter 3], [32, Chapter 6], or [69, Chapter 4].

Remark 4.1.4. The antipode map S given in Remark 4.1.3 is an antiautomorphism of
C(q)-algebras.

A standard application of the Hopf algebra structure on Uq(Ψ(G)) is the existence of a
triangular decomposition, originally due to Rosso:

Proposition 4.1.5 (Rosso, [118]). Let U = Uq(Ψ(G)). Then, U = U− ⊗ U0 ⊗ U+.

Corollary 4.1.6. The subalgebras U± are completely determined by the relations in Defi-
nition 4.1.2 (4). In particular, the automorphism ω induces isomorphisms of C(q)-algebras
U± ∼= U∓.

Also, U≥0 ∼= U0 ⊗ U+, U≤0 ∼= U− ⊗ U0.

Remark 4.1.7. Using the involution ω and Corollary 4.1.6, we also have U = U+⊗U0⊗U−.
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Proposition 4.1.5 and Corollary 4.1.6 imply that we can obtain a basis for Uq(g) once
we’ve specified a basis for U+

q (g) (equivalently U−q (g)). In Section 4.2 we will construct
several bases for U±: the PBW-type bases and Lusztig’s canonical basis.

Remark 4.1.8. Given any symmetrisable Kac-Moody algebra g with associated Cartan
datum (X,S,X∨, S∨) one can define an associated quantised universal enveloping algebra
Uq(g). For further details see [66].

Representation theory

In light of Remark 4.1.3, aspects of the representation theory of Uq(g) should closely resemble
the representation theory of G. Some precise statements on how the representation theory
of Uq(g) is a ‘deformation’ of the representation theory of G are given in [27, Chapter 6].

We record the basic definitions and results from the representation theory of Uq(g) that
we need. Let U = Uq(g), and denote the category of U -modules by U -mod. A U -module V
is a weight module if there is a weight space decomposition

V =
⊕
λ∈X

Vλ, where Vλ = {v ∈ V | Khv = q〈λ,h〉v, for all h ∈ X∨}.

A weight λ ∈ X is called a weight of V if Vλ 6= 0, in which case Vλ is called a weight space.
Denote by wt(V ) ⊆ X the set of weights of V . If λ ∈ wt(V ) then any nonzero x ∈ Vλ is
called a weight vector. Observe that, for a U -module V , the generators of U permute weight
spaces:

EiVλ ⊆ Vλ+αi , and FiVλ ⊆ Vλ−αi . (4.1.7)

A vector v ∈ V is called a highest weight vector of weight λ (resp. lowest weight vector of
weight λ) if there exists λ ∈ wt(V ) such that v ∈ Vλ and

U+v = 0, and V = Uv, (resp. U−v = 0, and V = Uv).

By Proposition 4.1.5, weight modules V admitting a highest weight vector (resp. lowest
weight vectors) are cyclic U−-modules (resp. cyclic U+-modules). A weight module V is a
highest weight module with highest weight λ (resp. lowest weight module with lowest weight
λ) if there exists a highest weight vector v ∈ Vλ (resp. if there exists a lowest weight vector
v ∈ Vλ). If V is a highest/lowest weight module of highest/lowest λ then dimVλ = 1.

Let V be a weight module such that dimVλ < ∞, for all λ ∈ X, and such that there
exists λ1, . . . , λk, µ1, . . . , µl ∈ X so that

wt(V ) ⊆ {≤ λ1} ∪ · · · ∪ {≤ λk} ∪ {≥ µ1} ∪ · · · ∪ {≥ µl}.

Here {≤ λ} := {ν ∈ X | ν ≤ λ} and {≥ µ} := {ν ∈ X | ν ≥ µ}. The character of V is

chV :=
∑
λ∈X

dimVλe
λ ∈ Z[[X]],
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where Z[[X]] is the formal group ring of X.
Let Oq ⊆ U -mod be the full subcategory of finitely-generated weight modules V with

finite dimensional weight spaces. Define Oq+ ⊆ Oq to be the full subcategory of modules
for which Ei, i ∈ I, acts locally nilpotently: for any v ∈ V , and any i ∈ I, there exists r
such that Er

i v = 0. Analogously, define Oq− ⊆ Oq to be the full subcategory of modules for
which Fi, i ∈ I, acts locally nilpotently. Define Oqint = Oq+ ∩ O

q
− to be the full subcategory

consisting of those U -modules V ∈ Oq for which Ei, Fi, i ∈ I, act locally nilpotently. Objects
in Oqint are called integrable U-modules.

Remark 4.1.9. The category of weight modules considered above is often referred to as the
category of Type 1 U -modules. See [69, Chapter 5] for further details.

Now we introduce some endofunctors on Oq. They will restrict to give endofunctors on
Oqint.

The automorphism ω defined in (4.1.2) induces an autoequivalence on Oq, V 7→ ωV : as
a vector space ωV = V but we define the twisted U -action ∗ on V

u ∗ v := ω(u)v, u ∈ U, v ∈ V. (4.1.8)

Then, (ωV )λ = V−λ and twisting induces an equivalence Oq±
∼−→ Oq∓. In particular, we

obtain an autoequivalence of Oqint.
For any V ∈ Oq, with V =

⊕
λ∈X Vλ and dimVλ <∞, we define the graded dual of V to

be
V∗ :=

⊕
λ

V ∗λ , where V ∗λ = HomC(q)(Vλ,C(q)). (4.1.9)

We provide V∗ with the structure of a U -module as follows: for x ∈ U , f ∈ V∗, define xf ∈ V∗
by

(xf)(u) = f(S(x)u), u ∈ U. (4.1.10)

Observe that, if V ∈ Oq, λ, µ ∈ wt(V ), and f ∈ V ∗λ , v ∈ Vµ, then

(Khf)(v) = q−〈µ,h〉f(v), h ∈ X∨.

Hence, (V∗)λ = V ∗−λ. Therefore, we have an endofunctor on Oq, V 7→ V∗. If V ∈ Oq+ (resp.
V ∈ Oq−) then V∗ ∈ Oq− (resp. V∗ ∈ Oq+): indeed, for i ∈ I, we have

F r
i (V∗)λ ⊆ (V∗)λ−rαi = V ∗−λ+rαi

so that, if V ∈ Oq+ then V−λ+rαi ≡ 0, whenever −λ ∈ wt(V ) and r is sufficiently large.
Hence, V 7→ V∗ restricts to give an endofunctor on Oqint.

Proposition 4.1.10. (a) The functor V 7→ V∗ is exact, and,

(b) (Oq±)∗ ⊆ Oq∓. In particular, (Oqint)∗ ⊆ O
q
int.
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We introduce some examples of U -modules that we use throughout this thesis. They are
the quantum analogues of (co)Verma modules from the representation theory of U(g).

Example 4.1.11. (a) Let λ ∈ X. Define

∆(λ) := U/

(∑
i∈I

UEi +
∑
h∈X∨

U(Kh − q〈λ,h〉1)

)
∈ Oq− (4.1.11)

and

∇(λ) := U/

(∑
i∈I

UFi +
∑
h∈X∨

U(Kh − q〈λ,h〉1)

)
∈ Oq+. (4.1.12)

Denote the left ideal in (4.1.11) (resp. (4.1.12)) by J−λ (resp. J+
λ ). The triangular

decomposition (Proposition 4.1.5) implies that ∆(λ) is a highest weight module having
highest weight λ, with highest weight vector 1 + J−λ , and that ∇(λ) is a lowest weight
module having lowest weight λ, with lowest weight vector 1 + J+

λ .

As a cyclic U−-module, ∆(λ) ∼= U−; as a cyclic U+-module, ∇(λ) ∼= U+. Moreover,
ω∆(λ) = ∇(−λ) and ω∇(λ) = ∆(−λ).

(b) Let a = (ai)i∈I , b = (bi)i∈I ∈ ZI≥0. Define the left ideal

Ja,b,λ :=
∑
i∈I

UEai+1
i +

∑
i∈I

UF bi+1
i +

∑
h∈X∨

U(Kh − q〈λ,h〉1) ⊆ U. (4.1.13)

A straightforward but lengthy calculation shows that the quotient U/Ja,b,λ ∈ Oqint (see
[69, Lemma 5.7]).

Definition 4.1.12. (a) Let λ ∈ X+ be a dominant weight and b = (bi) ∈ ZI≥0 be defined
by bi = 〈λ, α∨i 〉. Define V q(λ) ∈ Oqint to be the U -module

V q(λ) := U/J0,b,λ.

(b) Let λ ∈ X− be an antidominant weight and a = (ai) ∈ ZI≥0 be defined by ai = −〈λ, α∨i 〉.
Define Vq(λ) ∈ Oqint to be the U -module

Vq(λ) := U/Ja,0,λ.

The following result shows that the combinatorics of the representation theory of U is
‘the same as’ the corresponding representation theory of G. For details see [66, Chapter 3],
[69, Chapter 5].

Proposition 4.1.13. (a) The category Oqint is semisimple and closed under taking tensor
products and graded duals. The objects of Oqint are precisely the finite-dimensional
U-modules.



CHAPTER 4. CRYSTALS 64

(b) (i) Let λ ∈ X+ be dominant. Then, V q(λ) is a finite-dimensional irreducible highest
weight module with highest weight λ.

(ii) Let λ ∈ X− be antidominant. Then, Vq(λ) is a finite-dimensional irreducible
lowest weight module with lowest weight λ.

(c) If V ∈ Oqint is irreducible then V is a highest weight module.

(d) If V ∈ Oqint is a highest weight module with highest weight λ ∈ X then λ ∈ X+ and
V ∼= V q(λ). Similarly, if V ∈ Oqint is a lowest weight module having lowest weight
λ ∈ X then λ ∈ X− and V ∼= Vq(λ).

(e) Let λ ∈ X+ be dominant. let V (λ) be the finite-dimensional irreducible G-module with
highest weight λ. Then, chV (λ) = chV q(λ).

Remark 4.1.14. Using the twisted action (4.1.8), Proposition 4.1.13 implies that the irre-
ducible highest weight module ωV q(λ) is a lowest weight module having lowest weight −λ,
so that ωV q(λ) ∼= Vq(−λ). Similarly, we have V q(λ)∗ ∼= Vq(−λ).

In fact, as in the classical setting, we have, for λ ∈ X+,

Vq(−λ) ∼= V q(−w0(λ)).

Remark 4.1.15. The subalgebras U≥0 and U≤0 are Hopf subalgebras and most of the above
constructions can be defined by restricting the Hopf algebra structure from U .

The subalgebras U± are not Hopf subalgebras (they are not closed under ∆, for example);
however, we can define a (twisted) Hopf algebra structure. We describe this Hopf algebra
structure for U+, the structure on U− is obtained via ω. Define a (twisted) multiplication
(on homogeneous elements)

U+ ⊗ U+ × U+ ⊗ U+ −−−→ U+ ⊗ U+

(a⊗ b, c⊗ d) 7−−−→ q〈deg b,(deg c)∨〉ac⊗ bd.

Define

∆(Ei) = 1⊗ Ei + Ei ⊗ 1, S(Ei) = −Ei, ε(Ei) = 0, (i ∈ I) (4.1.14)

Then, (U+,∆, S, ε) is a (twisted) Hopf algebra. For further discussion see [99, Chapter 1].

4.2 Bases and parameterisations

In this section we give several constructions of bases for the quantised universal enveloping
algebra U = Uq(g). Using Proposition 4.1.5, it suffices to obtain a basis for either U+ or U−.
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PBW-type bases

For g of simply-laced, finite type, Lusztig introduces in [100] an action on U of the braid
group covering W . In subsequent joint work with M. Dyer [101, Appendix], and again still
for simply-laced, finite type g, Lusztig uses the braid group action to determine a collection
of bases Bi ⊆ U+ depending on a reduced expression i of the longest element w0 ∈ W .
This construction is a quantum analogue of the existence of the well-known PBW basis for
U(g). As such, the bases Bi ⊆ U+ are known as PBW-type bases. Saito later extended this
construction to g of arbitrary finite type and obtained PBW -type bases of U+ (see [119]).

We will briefly outline this construction. Following [101], define an algebra automorphism
Ti of U , i ∈ I, defined by

Ti(Ei) = −FiKdiα∨i
, Ti(Fi) = −K−diα∨i Ei, (4.2.1)

Ti(Ej) =
∑

r+s=−cij

(−1)rq−disE
(r)
i EjE

(s)
i , Ti(Fj) =

∑
r+s=−cij

(−1)rqdisF
(s)
i FjF

(r)
i j ∈ I, j 6= i,

Ti(Kh) = Ksi(h), h ∈ X∨.
It can be seen that T−1

i = ι ◦ Ti ◦ ι.
The following result is fundamental (see [69, Chapter 8]).

Proposition 4.2.1 (Lusztig [100], Saito [119]). The collection {Ti | i ∈ I} satisfy the braid
relations associated to the Weyl group of G.

Hence, there is an action of the braid group covering W on U . If w = si1 · · · sik ∈ W ,
with `(w) = k, then the automorphism Tw := Ti1 · · ·Tik is well-defined. Observe that, for
each i ∈ I,

Ti(Uα) ⊆ Usi(α), α ∈ Q.
The following Lemma can be found in [69, Proposition 8.20]).

Lemma 4.2.2. Let w = si1 · · · sik ∈ W , `(w) = k, such that

si1 · · · sik−1
(αik) = αj ∈ S, for some j ∈ I.

Then, Tsi1 ···sik−1
(Eik) = Ej ∈ U+.

Let i = (i1, . . . , im) ∈ R(w0) be a reduced expression for the longest element w0 ∈ W ,
and t = (t1, . . . , tm) ∈ Zm≥0. Define

pi(t) := E
(t1)
i1
Ti1

(
E

(t2)
i2

)
· · · (Ti1 · · ·Tim−1)

(
E

(tm)
im

)
. (4.2.2)

Then,

deg pi(t) =
m∑
j=1

tjβj, (4.2.3)

where βj := si1 · · · sij−1
(αij). Define

Bi := {pi(t) | t ∈ Zm≥0}. (4.2.4)



CHAPTER 4. CRYSTALS 66

Proposition 4.2.3 (Lusztig, [101, Appendix]). For every reduced expression i ∈ R(w0) the
set Bi is a (homogeneous) C(q)-basis of U+, called a PBW-type basis of U+.

Remark 4.2.4. Let i = (i1, . . . , im) ∈ R(w0). Then, i induces a total ordering on the set
of positive roots determined by the simple roots S ⊆ R as follows: define β1 = αi1 and, for
each j > 1, define

βj = si1 · · · sij−1
(αij).

Then, the sequence β1, . . . , βm ∈ R+ consists of distinct positive roots and provides an
enumeration of R+. We call the sequence β1, . . . , βm the root sequence associated to i.

Recall the PBW theorem (see [68, Chapter 17]) for the universal enveloping algebra
U(n+): for any ordered basis x1, . . . , xm of n+, the set of monomials

{xa11 · · ·xamm | (a1, . . . , am) ∈ Zm≥0} ⊆ U(n+)

is a C-basis of U(n+). In particular, if i ∈ R(w0) then the corresponding root sequence
β1, . . . , βm and root vectors xi := eβi ∈ n+(βi), i = 1, . . . ,m, induces a C-basis Bi of U(n+).
Here eα ∈ n+ is a root vector of weight α.

The bases Bi are q-analogues of the PBW-bases defined for U(n+). In fact, in the q → 1
limit, Bi specialises to Bi (see [101], Appendix).

Remark 4.2.5. Recall from (4.1.2) the isomorphism of algebras ω : U+ ∼−→ U−. Using this
isomorphism, a PBW-type basis Bi gives rise to a basis of U−. Using (4.2.1) we have

Ti(ω(Ej)) = (−q−di)〈αj ,α∨i 〉ω(Ti(Ej)), i, j ∈ I.

Hence, if i = (i1, . . . , im) ∈ R(w0) the set{
F

(t1)
i1

Ti1

(
F

(t2)
i2

)
· · · (Ti1 · · ·Tim−1)

(
F

(tm)
im

)
| (t1, . . . , tm) ∈ Zm≥0

}
⊆ U− (4.2.5)

is a basis of U−, called a PBW-type basis of U−.

Recall the antiautomorphism ι of U given in (4.1.3) and the involution i 7→ i∗ from Section
1.3. We will see that ι induces a permutation on the set {Bi | i ∈ R(w0)} of PBW-type
bases. First, we require some notation.

Definition 4.2.6. Let i = (i1, . . . , ir) ∈ Ir be a sequence. Define

i∗ := (i∗1, . . . , i
∗
r), iop = (ir, . . . , i1). (4.2.6)

The operations i 7→ i∗ and i 7→ iop commute with each other,

(iop)∗ = (i∗)op, for i ∈ Ir.

If i ∈ R(w0) then i 7→ i∗, i 7→ iop, are (commuting) permutations of R(w0).
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Proposition 4.2.7. Let i ∈ R(w0) and let i′ = (iop)∗. Then, ι(pi(t)) = pi′(t
op), for any

t = (t1, . . . , tm) ∈ Zm≥0, and where top = (tm, . . . , t1).

Proof. Let i = (i1, . . . , im) ∈ R(w0) and denote i′ = (iop)∗ = (i′1, . . . , i
′
m) ∈ R(w0). For any

k ∈ {1, . . . ,m}, we have
sik−1

· · · si1si′1 · · · si′m−k+1
= w0,

and
sik−1

· · · si1si′1 · · · si′m−k(αi′k−m+1
) = αik .

By Lemma 4.2.2, we obtain
Tw0si′

k−m+1

(Eim−k+1
) = Eik .

Hence,
Ti′1 · · ·Ti′m−k(Ei′m−k+1

) = T−1
i1
· · ·T−1

ik−1
(Eik) = ι(Ti1 · · ·Tik−1

(Ek))

Applying the antiautomorphism ι to pi(t) ∈ Bi, t = (t1, . . . , tm) ∈ Zm≥0, we obtain

ι(pi(t)) = ι
(
E

(t1)
i1
Ti1

(
E

(t2)
i2

)
· · · (Ti1 · · ·Tim−1)

(
E

(tm)
im

))
= ι
(
Ti1 · · ·Tim−1

(
E

(tm)
im

))
· · · ι

(
Ti1

(
E

(t2)
i2

))
ι(E

(t1)
i1

)

= E
(tm)

i′1
Ti′1

(
E

(tm−1)

i′2

)
· · · (Ti′1 · · ·Ti′m−1

)
(
E

(t1)
i′m

)
= pi′(t

op) ∈ Bi′ .

An immediate consequence is the following:

Corollary 4.2.8. Let i ∈ R(w0) and let i′ = (iop)∗. Then, ι(Bi) = Bi′.

Remark 4.2.9. There is an analogous result for the PBW-type bases of U− (see Remark
4.2.5): the antiautomorphism ι is an involutive permutation on the set of PBW-type bases
of U−.

Canonical bases and Lusztig parameterisation

In [97] Lusztig provided a simultaneous modification of the PBW-type bases, called the
canonical basis : each of the PBW-type bases is related to the canonical basis by a unitri-
angular change of basis (with respect to some order). Originally the construction of the
canonical basis was restricted to simply-laced, finite type g as it relied on results of Ringel
relating ADE quantised enveloping algebras U+ with the Hall algebra of the type ADE
quiver. Moreover, Lusztig’s construction made essential use of deep results in algebraic
geometry and topology coming from the theory of perverse sheaves and intersection coho-
mology. A favourable feature of Lusztig’s canonical basis is that it provides a construction
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of a canonical basis for each finite dimensional irreducible U -module admitting remarkable
consequences (for example, Theorem 4.2.15).

Independently and simultaneously, Kashiwara provided an elementary algebraic construc-
tion of a global basis of U− admitting similar consequences for the representation theory of
U . Kashiwara’s construction had the advantage of working for an arbitrary symmetrisable
Kac-Moody algebra and the only ‘geometry’ required was a basic result on the triviality of
vector bundles on P1 (which is essentially an algebraic problem). We will discuss Kashiwara’s
result further in Section 4.3.

Lusztig later [102] extended his construction of the canonical basis of U+ to the (positive
part of) quantised universal enveloping algebras associated arbitrary symmetric Kac-Moody
algebras, and outlined a construction for the non-symmetric setting. Again, his construction
relied on deep results from the theory of perverse sheaves and intersection cohomology.
Complete details of Lusztig’s topological construction of the canonical basis can be found in
[99, Part II].

In this section we recall the essential features of Lusztig’s results and indicate some of the
consequences for the determination of tensor product multiplicities in representation theory.

Theorem 4.2.10 (Lusztig, [97]). Let U = Uq(g).

(a) The Z[q−1]-submodule L = spanZ[q−1] Bi ⊆ U+ is independent of i.

(b) The Z-basis B = Bi + L ⊆ L/q−1L is independent of i.

(c) The projection L −→ L/q−1L induces a Q-graded isomorphism f : L ∩ L −→ L/q−1L
of Z-modules. The Z-basis B := f−1(B) is a Z[q−1]-basis of L and consists of bar-
invariant, homogeneous elements.

Corollary 4.2.11. ι(B) = B.

Proof. By Corollary 4.2.8 and Theorem 4.2.10(a), the antiautomorphism ι induces an action
on L/q−1L and a permutation of B ⊆ L/q−1L. Moreover, ι commutes with ¯ : U → U and
therefore preserves L ∩ L. Also, ι commutes with the natural projection π : L → L/q−1L,
so that f ◦ ι = ι ◦ f . The result follows.

The C(q)-basis B ⊆ U+ is Lusztig’s canonical basis. By Theorem 4.2.10, B is the unique
homogeneous basis of U+ such that

(i) for every b ∈ B, b = b,

(ii) for every i ∈ R(w0), t ∈ Zm≥0, there is a unique b = bi(t) ∈ B such that b − pi(t) is a
linear combination of elements in Bi with coefficients in q−1Z[q−1].

Define Bα := B ∩ Uα, α ∈ Q. Observe that B0 = {1}.
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Definition 4.2.12. Let i ∈ R(w0). The map

bi : Zm≥0 −−−→ B
t 7−−−→ bi(t)

is called the Lusztig parameterisation of B (in the direction i). If b = bi(t) then we call t the
Lusztig data of b (in the direction i).

Remark 4.2.13. Using the isomorphism ω : U+ ∼−→ U−, the image of B in U− can be
shown to be a basis possessing analogous properties as those described in Theorem 4.2.10.

The canonical basis B ⊆ U+
q (g) admits remarkable consequences for the representation

theory of Uq(g) and, by Proposition 4.1.13, for the representation theory of G itself. The
following technical result is essential.

Lemma 4.2.14. Let i ∈ I, r ≥ 0.

(a) B ∩ U+Er
i spans U+Er

i .

(b) B ∩ Er
iU

+ spans Er
iU

+.

Proof. (a) Let b ∈ Bν , where ν =
∑

i∈I νiωi, and fix i ∈ I. Define si(b) ∈ Z≥0 to be the
largest integer r such that 0 ≤ r ≤ νi and satisfying the condition:

(A) there exists z′ ∈ U+ such that b appears with nonzero coefficient in z′Er
i

Observe that b 7→ si(b) is well-defined: (A) is always satisfied when r = 0. Using [102,

Section 11.6], we have b ∈ U+E
si(b)
i .

Let z ∈ U+Er
i . By Theorem 4.2.10, we can write z =

∑
b∈B abb, ab ∈ C(q). Suppose

ab 6= 0. Then, degree considerations give r ≤ νi and r ≤ si(b) by definition of si(b).

Hence, b ∈ U+E
si(b)
i ⊆ U+Er

i .

(b) Applying the antiautomorphism ι to U+, the result follows from (a) and Corollary
4.2.11.

Theorem 4.2.15. Let λ ∈ X− be an antidominant weight, Vq(λ) the corresponding irre-
ducible lowest weight module (see Definition 4.1.12). Then, if Vq(λ) ∼= U+/Jλ as a cyclic
U+-module then B ∩ Jλ spans Jλ. Equivalently, {b+ Jλ | b /∈ Jλ} spans Vq(λ).

Proof. Let λ = −
∑

i∈I ciωi, with ci ∈ Z≥0. As a U+-module we have Vq(λ) ∼= U+/
∑

i∈I U
+Eci+1

i

and it suffices to show that B ∩ U+En
i spans U+En

i , for every i ∈ I and every n ≥ 0. This
follws from Lemma 4.2.14(a).
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Definition 4.2.16. Let λ ∈ X+, vλ ∈ Vq(w0(λ)) be a lowest weight vector. Define

B(λ) := {b ∈ B | bvλ 6= 0}.

Therefore,

B(λ) = {b ∈ B | b /∈ U+E
−〈w0(λ),α∨i 〉+1
i , i ∈ I}.

Proposition 4.2.17. Let i ∈ R(w0). Then, for any λ ∈ X+, B(λ) is parameterised by a
subset of Lusztig data via the Lusztig parameterisation of B in the direction i.

In the remainder of this section we illustrate an application of the canonical basis to
determining combinatorial tensor product multiplicity formulae. First we recall the basic
problem.

For λ ∈ X+, we write V (λ) for the irreducible g-module, and let wt(λ) := wtV (λ) be the
set of weights of V (λ).

Let λ, µ, ν ∈ X+. Then, the tensor product V (λ)⊗ V (µ) decomposes as a direct sum of
irreducibles

V (λ)⊗ V (µ) ∼=
⊕
ν

V (ν)c
ν
λ,µ

We would like to determine manifestly positive combinatorial models that compute the
nonnegative integers cνλ,µ. Such combinatorial models are called Littlewood-Richardson rules
in reference to the type A model involving skew-tableaux.

Gelfand-Zelevinsky proposed in [44], [45], an approach to determining the tensor product
multiplicities cνλ,µ by counting lattice points in polytopes (see also [5]). Their argument relied
on the notion of a good basis in V (λ) that we will now describe.

Definition 4.2.18. Let λ, γ ∈ X+, β ∈ wt(λ). Define the γ-primitive β-weight vectors in
V (λ) to be the nonzero elements in the following subspace

V (λ; β, γ) := {v ∈ V (λ)β | e
〈γ,α∨i 〉+1
i (v) = 0, i ∈ I}.

The relation between V (λ; β, γ) and cνλ,µ is given by the following result due to Kostant
[89, Lemma 4.1].

Proposition 4.2.19. Let λ, µ, ν ∈ X+, Then,

cνλ,µ = dimV (λ; ν − µ, µ).

Proof. Let λ, µ, ν ∈ X+. Then,

cνλ,µ = dim Homg(V (ν), V (λ)⊗ V (µ))

= dim Homb+(C(ν), V (λ)⊗ V (µ))

= dim Homb+(C(ν)⊗ V (µ)∗, V (λ))
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Any f ∈ Homb+(C(ν)⊗ V (µ)∗, V (λ)) is determined by f(1ν ⊗ v−µ), where v−µ ∈ V (µ)∗ is a
lowest weight vector. Then, we must have

f(1ν ⊗ v−µ) ∈ V (λ)ν−µ.

Moreover, we must have e
〈µ,α∨i 〉+1
i (v−µ) = 0, for each i ∈ I. Therefore, there is an isomorphism

Homb+(C(ν)⊗ V (µ)∗, V (λ)) −−−→ V (λ; ν − µ, µ)

f 7−−−→ f(1ν ⊗ v−µ).

The result follows.

A good basis for V (λ), λ ∈ X+, is a weight basis B ⊆ V (λ) such that B ∩ V (λ; β, γ)
spans, for all β ∈ wt(λ), γ ∈ X+. In particular, by Proposition 4.2.19, a subset of a good
basis of V (λ) computes cνλ,µ.

Mathieu showed proved the existence of good bases in [106] using Frobenius splitting
methods (in particular, his proof is restricted to finite type). Lusztig provided a proof using
the canonical basis; his approach extends to arbitrary symmetrisable type (upon equating
Lusztig’s canonical basis with Kashiwara’s global basis).

Proposition 4.2.20 (Mathieu [106], Lusztig [98, Section 4]). Let λ ∈ X+. Then, there
exists a good basis of V (λ).

Proof. Let λ ∈ X+ and consider the Uq(g)-module V q(λ). There is an analogous definition
of the space of ν-primitive µ-weight vectors in V q(λ). For β, γ ∈ X+, define

Iβ :=
∑
i∈I

U+E
〈β,α∨i 〉+1
i , and Jγ :=

∑
i∈I

E
〈γ,α∨i 〉+1
i U+.

By Lemma 4.2.14, B ∩ Iβ spans Iβ, B ∩ Jγ spans Jγ, and B ∩ Iβ ∩ Jγ spans Iβ ∩ Jγ, for all
β, γ ∈ X+.

Recall from Remark 4.1.14 that V q(λ) = Vq(w0(λ)) ∼= U+/I−w0(λ). Hence, for any γ ∈ X+

there is an isomorphism (of vector spaces)

Jγ/(I−w0(λ) ∩ Jγ) ∼= JγV
q(λ)

and (B ∩ Jγ) \ (B ∩ I−w0(λ) ∩ Jγ) maps to a basis of JγV
q(λ) =

∑
i∈I E

〈γ,α∨i 〉+1
i V q(λ). We

have just shown that B(λ) ∩ Jγ maps to a weight basis Bλ,γ of
∑

i∈I E
〈γ,α∨i 〉+1
i V q(λ), for any

γ ∈ X+.
If we consider the dual space V q(λ)∗ as a U -module then the annihilator of JγV

q(λ) in
V q(λ)∗ is seen to be the subspace

(JγV
q(λ))⊥ = {ξ ∈ V q(λ)∗ | E〈γ,α

∨
i 〉+1

i (ξ) = 0, i ∈ I}.

Hence, (JγV
q(λ))⊥ is spanned by part of the dual basis B∗λ,γ. Hence, at the specialisation

q = 1 we obtain a good basis for V (λ)∗ ∼= V (−w0(λ)) and the result follows.
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Let i ∈ R(w0), with corresponding root sequence β1, . . . , β`(w0), and bi the corresponding
Lusztig parameterisation in direction i. Let b ∈ B be such that b = bi(t). Then, (recall
(4.2.3))

deg b = deg bi(t) =

`(w0)∑
j=1

tjβj.

As V (λ; ν − µ, µ) ⊆ V (λ)ν−µ, Proposition 4.2.19 implies that the tensor product multi-
plicity cνλ,µ is equal to the cardinality of a subset of lattice points in the following polytope

sitting inside the Kostant partition space RR+
:

{t ∈ RR+

≥0 | λ− ν + µ =

`(w0)∑
j=1

tjβj} ⊆ RR+

. (4.2.7)

Remark 4.2.21. Berenstein-Zelevinsky show that the subset whose lattice points count cνλ,µ
is a polytope embedded in the space (4.2.7) and explicitly determine a set of defining in-
equalities [14, Theorem 2.3]. A remarkable feature of their description is that the inequalities
they obtain are determined by the representation theory of the Langlands dual group LG.

Canonical bases and string parameterisations

There is another, quite different, parameterisation of the canonical basis B called the string
parameterisation. The string parameterisation was introduced by Kashiwara in his work on
Littelmann’s generalised Demazure character formulae [77]. Similar parameterisations were
considered by Littelmann [95], and Berenstein-Zelevinsky [14]. In this section we introduce
a string parameterisation that is different, but equivalent to, the string parameterisation
defined in [14, Section 3]. We relate our string parameterisation to Berenstein-Zelevinsky’s
in Remark 4.2.25. We will describe Kashiwara’s original parameterisation in Section 4.3.

Let V be a U−-module satisfying the following property: for any nonzero v ∈ V , i ∈ I,
F r
i v = 0, for sufficiently large r. We will call a U−-module with this property locally nilpotent.

For locally nilpotent U−-module V , the function

ci : V \ {0} −−−→ Z≥0

v 7−−−→ max{r ∈ Z≥0 | F r
i v 6= 0}. (4.2.8)

is well-defined.

Definition 4.2.22. Let V be a locally nilpotent U−-module, v ∈ V nonzero. Given any
sequence i = (i1, . . . , ir) ∈ Ir define the string of v in the direction i to be

ci(v) = (t1, . . . , tr) ∈ Zr≥0,

where we define recursively

t1 = ci1(v), t2 = ci2
(
F t1
i1

(v)
)
, . . . , tr = cir

(
F
tr−1

ir−1
· · ·F t1

i1
(v)
)
.
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The string map of V in the direction i is the function

ci : V \ {0} −−−→ Zr≥0

v 7−−−→ ci(v).

We define string maps of U+ in the direction i ∈ R(w0) that give rise to a family of
parameterisations of the canonical basis B. These string parameterisations are different
to the Lusztig parameterisations in Definition 4.2.12. First, we need to specify a locally
nilpotent action of U− on U+.

In [69, Chapter 6], there is described a graded perfect pairing

(, ) : U− × U+ −−−→ C(q)

satisfying
(ω(x), ω(y)) = (y, x) = (ι(y), ι(x)), y ∈ U−, x ∈ U+,

and such that, if x ∈ U+(α), y ∈ U−(β), with α + β 6= 0, then (y, x) = 0. Composing with
ω we obtain a nondegenerate symmetric bilinear form on U+

(, )′ : U+ × U+ −−−→ C(q)

(u, v) 7−−−→ (ω(u), v).
(4.2.9)

For i ∈ I, let Li be the linear operator on U+ adjoint to left multiplication by Ei: Li is
uniquely specified by the condition that

(Li(y), x)′ = (y, Eix)′, y, x ∈ U+. (4.2.10)

Then, for all µ ∈ Q+,
Li(U

+
µ ) ⊆ U+

µ−αi . (4.2.11)

Since U− and U+ are isomorphic algebras we obtain an action of U−,op, the opposite
algebra of U−, on U+, uniquely determined by

Fi • y := Li(y), i ∈ I, y ∈ U+.

Twisting by ι we obtain an action of U− on U+

x · y := ι(x) • y, x ∈ U−, y ∈ U+.

Specifically, for F ∈ U−, u ∈ U+, F • u ∈ U+ is the unique element such that

(F • u, v)′ = (u, ω(ι(F ))v)′, v ∈ U+.

By (4.2.11), U+ is a locally nilpotent U−-module. Hence, for any sequence i ∈ Ir we
can consider the string map ci associated to U+ with respect to this locally nilpotent U−-
structure.
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Theorem 4.2.23 (Littlemann [95], Berenstein-Zelevinsky [14, Proposition 3.5]). Let i ∈
R(w0). Then, the string map ci associated to U+ defines a bijection from B onto the set of
all lattice points Ci(Z) of some rational polyhedral cone Ci ⊆ R`(w0).

Definition 4.2.24. Let i ∈ R(w0). We define the string parameterisation of B in the
direction i to be the function

ci : B −−−→ Ci(Z) ⊆ Z`(w0)
≥0

b 7−−−→ ci(b).
(4.2.12)

The cone Ci ⊆ R`(w0)
≥0 spanned by the image of ci is called the string cone in the direction i.

Remark 4.2.25. In [95] and [14], the authors define string maps for locally nilpotent U+-
modules and obtain string parameterisations for the dual canonical basis B∗. We briefly
describe the construction of string maps from [14] and explain why it is equivalent to the
definition given above.

Certainly, for any locally nilpotent U+-module V and i ∈ Ir, there is an analogous notion
of string maps ci (replace Fi by Ei in the construction). Let U+

∗ be the graded dual of U+

(recall (4.1.9)),

U+
∗ :=

⊕
α≥0

U∗α, where U∗α = HomC(q)(Uα,C(q)).

By Proposition 4.2.3 and Remark 4.2.4, for any α > 0, we have dimUα = P(α) <∞, where
P is Kostant’s partition function ([68, Section 24]), so that dimU+

α < ∞, for all α. Recall
that the grading on U+ is given by the U0-action u 7→ KhuK−h, u ∈ U+, h ∈ X∨. Therefore,
U+
∗ is a Q−-graded vector space and U+

∗,α = U∗−α.
The dual canonical basis B∗ is the basis of U+

∗ dual to B ⊆ U+: for b ∈ B, we define
b∗ ∈ B∗ by

b∗(b′) = δb,b′ , b′ ∈ B.
There is an action of U+ on U+

∗ : for E ∈ U+, f ∈ U+
∗ , we have E · f ∈ U+

∗ determined
by

(E · f)(u) = f(ι(E)u), u ∈ U+. (4.2.13)

With this definition U+ acts locally nilpotently on U+
∗ . Hence, for any sequence i =

(i1, . . . , ir) ∈ Ir, we can consider the string map ci associated to U+
∗ . It is this string

map that appears in [14]: the authors show that ci is a bijection between B∗ and Ci(Z).
Twisting the U≥0-module U+

∗ by ω we obtain a Q+-graded U≤0-module. The form (4.2.9)
identifies the U≤0-modules U+ ∼= ωU+

∗ . In particular, the string cones defined via either
construction are equal.

In [14], Berenstein-Zelevinsky gave an explicit description of Ci by describing a set of
defining inequalities. A remarkable feature of this description is that the defining inequalities
are defined in terms of the representation theory of the Langlands dual Lg. We recall their
result.
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Let i = (i1, . . . , im) ∈ R(w0). An i-trail from γ to δ in V (ω∨i ), where V (ω∨i ) is the
irreducible representation of LG having highest weight ω∨i , is a sequence of weights π = (γ =
γ0, γ1 . . . , γm = δ), γi ∈ wt(V (ω∨i )) ⊆ X∨, such that

(i) for k = 1, . . . ,m we have γk−1 − γk = ckα
∨
ik

, for some ck ∈ Z≥0, and

(ii) ec1i1 · · · e
cm
im

is a nonzero linear map from V (ω∨i )δ to V (ω∨i )γ.

Given an i-trail π = (γ0, . . . , γm) in V (ω∨i ), define (recall that γi ∈ X∨)

d
(i)
k (π) :=

1

2
〈αik , γk−1 + γk〉 , k = 1, . . . ,m. (4.2.14)

Condition (i) implies that dk(π) ∈ Z, for all k.

Theorem 4.2.26 ([14, Theorem 3.10]). Let i ∈ R(w0), m = `(w0). Then, the string cone

Ci is the cone in Rm consisting of all (t1, . . . , tm) such that
∑

k d
(i)
k (π)tk ≥ 0, for any i ∈ I

and any i-trail from ω∨i to w0siω
∨
i in V (ω∨i ).

We describe the relationship between string cones and the representation theory of U .
Let λ ∈ X− be an antidominant weight. There is an exact sequence of U -modules

0 −−−→ Iλ −−−→ ∇(λ) −−−→ Vq(λ) −−−→ 0 (4.2.15)

where Iλ =
∑

i∈I U(E
−〈λ,α∨i 〉+1
i + J+

λ ) ⊆ ∆(λ) and Vq(λ) is the finite-dimensional irreducible
U -module having lowest weight λ (see (4.1.11) and Definition 4.1.12).

In Theorem 4.2.15 we saw that the canonical basis B ⊆ U+ gives rise to a canonical basis
of Vq(λ) = V q(w0(λ)). Recall the corresponding subset B(w0(λ)) ⊆ B (Definition 4.2.16).
Therefore, we have the following result.

Proposition 4.2.27. Let i ∈ R(w0). Then, for any λ ∈ X+, B(λ) is parameterised by a
subset of Ci(Z) via the string map in the direction i.

Definition 4.2.28. Let i ∈ R(w0). Define the weighted string cone C i ⊆ RX ×R`(w0) to be
the R≥0-span of

C i(Z) := {(λ, t) ∈ X × Z`(w0) | t = ci(b), for some b ∈ B(λ)}

Observe that, for any λ ∈ X+, 1 ∈ B(λ) ⊆ U+: by construction, 1 corresponds to a
lowest weight vector in V q(λ). Hence, for any λ, λ′ ∈ X+, B(λ) ∩ B(λ′) 6= ∅. The weighted
string cone ‘separates’ the subsets B(λ): consider the projection onto the first factor

p : C i −−−→ RX
(λ, t) 7−−−→ λ

(4.2.16)
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Then, for any λ ∈ X+, we can identify p−1(λ)∩C i(Z) = B(λ), and we obtain an identification

C i(Z) =
⊔
λ∈X+

B(λ). (4.2.17)

We make the following definitions.

Definition 4.2.29. Let i = (i1, . . . , im) ∈ R(w0). Define the highest weight map

hw : C i −−−→ RX
(λ, t) 7−−−→ λ

(4.2.18)

and the weight map
wt : C i −−−→ RX

(λ, t) 7−−−→ w0(λ) +
∑m

j=1 ajαij
(4.2.19)

Remark 4.2.30. The weight map (4.2.19) also appears in [1], albeit in slightly different
form. Observe that, for µ ∈ X, λ ∈ X+, the intersection of fibres wt−1(µ) can be identified
with the µ-weight space in V (λ).

A description of the inequalities defining C i ⊆ RX × R`(w0) first appeared in [95] for
particular i. An implicit description can be found in later work of Berenstein-Zelevinsky [14]
for arbitrary i ∈ R(w0), and was explicitly given in [1, Theorem 1.1]).

Theorem 4.2.31. Let i = (i1, . . . , im) ∈ R(w0). The weighted string cone C i is the inter-
section of RX × Ci with the `(w0) half spaces defined by the inequalities

tk +
m∑

l=k+1

〈αil , α∨ik〉tl ≤ 〈λ
∗, αi∨k 〉, k = 1, . . . ,m. (4.2.20)

Here λ∗ = −w0(λ). The inequalities in (4.2.20) are called λ-inequalities.

We provide some the motivation for the above definitions. The definition of the weight
map and the appearance of the λ-inequalities can be understood in terms of the combinatorics
of the representation theory of U . By [99, Theorem 14.3.2(c)], we have

L
(ci(b))
i (b) ∈ B, for any b ∈ B.

Here L
(r)
i :=

Lri
[r]q !

is the associated q-divided power.

Hence, if i = (i1, . . . , im) ∈ R(w0) and ci(b) = (a1, . . . , am), b ∈ B, then

bj := L
(aj)
ij
· · ·L(a1)

i1
(b) ∈ B, j = 1, . . . ,m.
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Littelmann [95, Section 1] has shown that, for any b ∈ B,

L
(am)
im
· · ·L(a1)

i1
(b) = 1 ∈ B.

Let λ ∈ X+ and choose vλ ∈ V q(λ) a lowest weight vector. Then, {bvλ | b ∈ B(λ)} is
a basis of V q(λ). In particular, if b ∈ B(λ) with ci(b) = (a1, . . . , am), then bvλ is a weight
vector having weight

w0(λ) +
m∑
j=1

ajαij = wt(λ, a1, . . . , am).

This is where the definition for the weight map comes from.
Identify bj ∈ B with the basis element bjvλ so that bj has weight wt(λ, a). Recall from

(4.2.8) the definition of ci, i ∈ I, the string in the direction i. Consider the im-string in
V q(λ) through 1. Then, am = cim(bm−1) implies

am ≤ −〈w0(λ), α∨im〉.

Next, consider the im−1-string in V q(λ) through bj−1. Since am−1 = cim−1(bj−2) we must
have

am−1 ≤ −〈w0(λ) + amαim , α
∨
im−1
〉 ==⇒ am−1 + am〈αim , α∨m−1〉 ≤ 〈−w0(λ), αim−1〉.

Continuing in this fashion we recover the λ-inequalities (4.2.20): consider the ik-string in
V q(λ) through bk. Then, ak = cik(bk−1), implies

ak ≤ −〈w0(λ) +
m∑

j=k+1

ajαij , αik〉 ==⇒ ak +
m∑

j=k+1

aj〈αij , α∨ik〉 ≤ 〈−w0(λ), α∨ik〉.

The content of the Littlemann, Berenstein-Zelevinsky results cited aboved is that these
necessary conditions are sufficient.

Remark 4.2.32. As Lusztig’s canonical basis B is determined by Uq(g), it does not depend
on the isogeny class of a semisimple complex algebraic group. Therefore, the string cone
is independent of the isogeny class of a semisimple complex algebraic group. The explicit
description of the string cone given by Berenstein-Zelevinsky (see Theorem 4.2.26) requires
G to be simply-connected in order to define the appropriate i-trails. However, this is not a
problem when we are considering parameterisations of bases of irreducible representations as
parameterisations of bases for representations extend across isogeny classes. If G is reductive
then G is an extension of a semisimple algebraic group Gss by a central torus and a similar
argument allows us to consider parameterisations of bases of irreducible representations of
G via Gss. Of course, if we want to keep track of weights then we must remember how the
central torus acts.
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4.3 Combinatorial and geometric crystals

‘In some sense the q → 0 limit strips a module of its linear structure,
so we are reduced to combinatorics.’ A. Joseph, [71, p.26]

Let U = Uq(g) be the quantised universal enveloping algebra associated to the Lie algebra
g of a reductive complex algebraic group. In this section we will describe discrete combi-
natorial models of the representation theory of U discovered by Kashiwara, called crystals.
The theory of crystals developed from Kashiwara’s investigations into bases of U− at the
specialisation q = 0. A purely combinatorial construction of crystals, not relying on U−, and
using an arbitrary (not necesarily symmetrisable) Cartan datum (Π, S,Π∨, S∨), was given
by Littelmann soon thereafter in [96] using his path model.

Since this early development, crystal structures have been discovered throughout mathe-
matics: using the geometry of the affine Grassmannian of Lg [19], [72]; using the symplectic
geometry of quiver varieties [79]; in the study of the generalisation of the Casselmann-Shalika
formula to the metaplectic group and associated Eisenstein series[22].

For a reductive complex algebraic group G, Berenstein-Kazhdan described a general
geometric framework to obtain crystal structures [12], [13]. Using only the geometry and
representation theory of G they recovered the crystal structures obtained by Kashiwara and
Littelmann. The tool that they used to construct Kashiwara crystals was the tropicalisation
functor Trop. We provide a construction of Trop on the category of algebraic tori and extend
its domain to the category of positive varieties.

Kashiwara crystals

In this section we briefly recall Kashiwara’s notion of an (abstract) crystal. Crystals provide
combinatorial models of the crystal bases of (specialisations of) integrable U -modules, and
therefore for the representation theory of G. We will also indicate Kashiwara’s original
introduction of the string parameterisation. For further details on crystal bases see [76]; for
further details on the category of abstract crystals see [77], [75].

A Kashiwara crystal encodes the combinatorial data of the crystal base of an integrable
U -module V . As a first approximation, and sufficient for our considerations, a crystal base
is a basis B of V at q = 0 satisfying the following property: for any i ∈ I, the C(qdi)-
subalgebra Ui of U generated by Ei, Fi, K±diα∨i is isomorphic to Uq(sl2) and V decomposes
as a Ui-module

V ∼=
⊕
j

V (l
(i)
j ).

Here V (l
(i)
j ) is the (l

(i)
j + 1)-dimensional irreducible Uq(sl2)-module. Then, B is a basis

of the specialisation at q = 0 of V such that, for any i ∈ I, B induces an isomorphism
V0
∼=
⊕

j V (l
(i)
j )0. Here W0 is the specialisation at q = 0 of a Ui-module W .

In [76] Kashiwara showed the existence of a crystal basis for any integrable U -module
V (more generally, he proved the existence of a crystal basis for the negative part U−
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of the quantised universal enveloping algebra associated to any symmetrisable Kac-Moody
algebra). Moreover, Kashiwara shows that a crystal basis could be ‘melted’ (i.e. lifted from
the specialisation at q = 0) to provide a basis of the U -module V , called a global basis, and
that the global basis for the irreducible U -modules V q(λ), λ ∈ X+, can be obtained from
a global basis of U−. Grojnowski-Lusztig later showed in [56] that Kashiwara’s global basis
was equal to Lusztig’s canonical basis in U− (in the symmetrisable Kac-Moody setting): the
composition of ω with the bar involution ¯ takes B to Kashiwara’s global basis.

We now define the abstract notion of a crystal and restrict ourselves to those crystals
associated to the Lie algebra g. Essentially all of the definitions and constructions extend to
symmetrisable Kac-Moody type. For the further details on crystals coming from symmetris-
able Kac-Moody algebras see [66]; for details on the theory of abstract crystals associated
to arbitrary Cartan datum (without requiring recourse to quantised universal enveloping
algebras) see [96], [71], [23].

Extend the standard order on Z to a linear ordering on Z−∞ := Z ∪ {−∞} so that −∞
is the smallest element. Define

−∞+ x = −∞, for any x ∈ Z−∞.

Let G be a reductive complex algebraic group with associated root datum (X,R,X∨, R∨).

Definition 4.3.1. An abstract (Kashiwara) crystal of type (R,X) is a (nonempty) set B
together with maps

wt : B → X, εi, ϕi : B → Z−∞, ẽi, f̃i : B → B t {0}, (i ∈ I). (4.3.1)

Here 0 is a ghost element not contained in B. We call the maps wt, εi, ϕi, i ∈ I, the structure
maps. The collection (B, εi, ϕi, ẽi, f̃i)i∈I is subject to the following axioms:

(C1) ϕi(b)− εi(b) = 〈wt(b), α∨i 〉, for each i ∈ I;

(C2) if b ∈ B satisfies ẽi(b) 6= 0 then wt(ẽi(b)) = wt(b) + αi, ε(ẽi(b)) = εi(b)− 1, ϕi(ẽi(b)) =
ϕi(b) + 1;

(C2)’ if b ∈ B satisfies f̃i(b) 6= 0 then wt(f̃i(b)) = wt(b)− αi, ε(f̃i(b)) = εi(b) + 1, ϕi(f̃i(b)) =
ϕi(b)− 1;

(C3) for b, b′ ∈ B, b′ = f̃i(b) if and only if ẽi(b
′) = b;

(C4) if ϕi(b) = −∞ then ẽi(b) = f̃i(b) = 0.

For µ ∈ X, define Bµ := {b ∈ B | wt(b) = µ}. The functions ẽi, f̃i, i ∈ I, are called
crystal operators. Given a crystal B one may associate an I-coloured directed graph called

the crystal graph: the set of vertices is B and there exists a directed arrow b
i−→ b′ if and

only if f̃i(b) = b′. We say that B is connected if its crystal graph is connected. A union of
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connected components of the crystal graph determines a subcrystal B′ ⊆ B. B is a highest
weight crystal if there exists unique b ∈ B such that ẽib = 0, for all i ∈ I; B is a lowest
weight crystal if there exists unique b ∈ B such that f̃ib = 0, for all i ∈ I.

Let B1 and B2 be crystals of the same type. A morphism of crystals is a function
ψ : B t {0} → B′ t {0} such that

(CM1) ψ(0) = 0;

(CM2) if ψ(b) 6= 0 then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b), for all i ∈ I;

(CM3) for b ∈ B such that ψ(b) 6= 0 and ψ(ẽi(b)) 6= 0, we have ψ(ẽi(b)) = ẽi(ψ(b));

(CM3)’ for b ∈ B such that ψ(b) 6= 0 and ψ(f̃i(b)) 6= 0, we have ψ(f̃i(b)) = f̃i(ψ(b)).

Crystals together with crystal morphisms define a category K. If B1 and B2 are crystals
of the same type then their disjoint union B1 t B2 is a crystal in the obvious way: this
provides K with a coproduct. Moreover, K can be equipped with a tensor structure, defined
as follows: if B1, B2 ∈ K are crystals of the same type then define the crystal B1⊗B2, where

(i) B1 ⊗B2 = B1 ×B2 as a set. We write b1 ⊗ b2 for the pair (b1, b2).

(ii) wt(b1 ⊗ b2) = wt(b1) + wt(b2).

(iii)

f̃i(b1 ⊗ b2) =

{
f̃i(b1)⊗ b2, if ϕi(b2) ≤ εi(b1),

b1 ⊗ f̃i(b2), if ϕi(b2) > εi(b1).

(iv)

ẽi(b1 ⊗ b2) =

{
ẽi(b1)⊗ b2, if ϕi(b2) < εi(b1),

b1 ⊗ ẽi(b2), if ϕi(b2) ≥ εi(b1).

We understand b⊗ 0 = 0⊗ b = 0.

(v) ϕi(b1 ⊗ b2) = max(ϕi(b1), ϕi(b2) + 〈wt(b1), α∨i 〉), and

(vi) εi(b1 ⊗ b2) = max(εi(b2), εi(b1)〈wt(b2), α∨i 〉).

Remark 4.3.2. If B1, . . . , , Bk are crystals such that

εi(b) = max{r | ẽri (b) 6= 0}, ϕi(b) = max{r | f̃i(b) 6= 0}, b ∈ B1 ∪ . . . ∪Bk, i ∈ I, (4.3.2)

then the action of the crystal operators ẽi, f̃i on a tensor b1⊗· · ·⊗ bk can be computed using
the signature rule: decorate each tensorand bj with ϕi(bj) ‘−’ signs followed by εi(bj) ‘+’
signs. This gives rise to a sequence in the alphabet {−,+}. Successively cancel all adjacent
pairs +− to obtain a sequence having a ‘−’ signs followed by b ‘+’ signs. Then,

ϕi(b1 ⊗ · · · ⊗ bk) = a, and εi(b1 ⊗ · · · ⊗ bk) = b,
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and f̃i acts on the tensor factor associated to the rightmost remaining −, and ẽi acts on the
tensor fact associated to the leftmost +.

Example 4.3.3. (1) Let G be a reductive complex algebraic group with associated root
datum (X,R,X∨, R∨), g its Lie algebra. Let U = Uq(g) be the associated quantised
universal enveloping algebra. Let λ ∈ X− be antidominant and Vq(λ) = U+/I−λ,

where I−λ =
∑

i U
+E
〈−〈λ,α∨i 〉+1
i . Let λ′ = w0(λ). Hence, Vq(λ) is the irreducible finite

dimensional U -module having lowest weight λ and highest weight λ′. Let B(λ′) ⊆ B
be the subset from Definition 4.2.16. Then, B(λ′) maps onto a basis of Vq(λ). Let
V(λ′) be the Z[q−1]-span of this base. By Theorem 4.2.10, we obtain a homogenous
basis B(λ′) of the Z-module V(λ′)/q−1V(λ′). The pair (B(λ′),V(λ′)) is an example of
a crystal base. Recall the Z[q−1]-submodule L from Theorem 4.2.10. If b ∈ B(λ′), let
b ∈ B(λ′) be the unique element in B that maps to b. Let πλ : L → V(λ′)/q−1V(λ′) be
the composition of the above projections. We define a crystal structure of type (R,X)
on B(λ′):

(i) if b ∈ B(λ′)µ then wt(b) = µ;

(ii) if b ∈ B(λ′) then ẽib := πλ(Eib), f̃ib := πλ(Li(b)), i ∈ I;

(iii) εi(b) = max{r | ẽri (b) 6= 0}, ϕi(b) = max{r | f̃ ri (b) 6= 0}.

For details regarding the well-definedness of these definitions see [99, Part III].

(2) More generally, given any integrable U -module V , one can define a crystal B(V ) in an
analogous manner.

(3) Let B(−∞) ⊆ L/q−1L be the image of the canonical basis B (recall the lattice L fom
Theorem 4.2.10). Define the weight map wt, the crystal operators and ϕi, i ∈ I, as in
the previous example. Define εi(b) = ϕi(b) + 〈wt(b), α∨i 〉. Ths endows B(−∞) with a
crystal structure.

(4) If B is a crystal then we define B∨ as follows: as a set B∨ = {b∨ | b ∈ B} and

wt(b∨) = −wt(b), εi(b
∨) = ϕi(b), ϕi(b

∨) = εi(b), ẽi(b
∨) = (f̃i(b))

∨, f̃i(b
∨) = (ẽi(b))

∨.

Here 0∨ = 0. B∨ is called the dual of B and B∨∨ = B.

(5) B(∞) := B(−∞)∨. This is the crystal associated to the crystal basis of U− constructed
by Kashiwara [76].

(6) Let λ ∈ X. Then, there is a crystal Tλ = {tλ} with wt(tλ) = λ and ϕi(tλ) = −∞, for
all i ∈ I.

(7) Let λ ∈ X− be antidominant. There is an isomorphism of crystals B(λ)∨ ∼= B(−w0(λ)).
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Remark 4.3.4. Let B1, B2 be crystals associated to crystal bases of integrable U -modules
V1, V2. The crystal B1∪B2 is the crystal associated to the integrable U -module V1⊕V2, and
the crystal B1⊗B2 is the crystal associated to the integrable U -module V1⊗V2. It is shown
in [75] that there are isomorphisms B ⊗ T0

∼= B, T0 ⊗ B ∼= B, where T0 is the crystal from
Example 4.3.3, and that K is a monoidal category.

The following result indicates the relationship between crystals and representation theory.

Proposition 4.3.5. Let B = B(V ) be a finite crystal of type (R,X) associated to an in-
tegrable Uq(g)-module V . Then, if V ∼=

⊕
λ∈X+

V q(λ)cλ then B decomposes as a disjoint
union

B = tλ∈X+B(λ)cλ .

Therefore, crystals provide a tool to approach tensor product decomposition computa-
tions: if λ1, . . . , λk ∈ X− are antidominant then the connected components of the crystal
B(λ1)⊗· · ·⊗B(λk) correspond precisely to the irreducible summands of V q(λ1)⊗· · ·⊗V q(λk).
Upon specialisation at q = 1 this provides an effective computational model for computing
tensor product multiplicities for g.

An important problem is to determine combinatorially accessible examples of crystals.
We provide a construction for all crystals B(λ), λ ∈ X+, in type A

Let g = gln be the Lie algebra of the general linear group GLn(C). Let I = {1, . . . , n−1},
X = Zn with standard basis ε1, . . . , εn, S = {αi}n−1

i=1 , where αi = εi − εi+1, i = 1, . . . , n − 1.
Let $i =

∑i
j=1 εj, for i = 1, . . . , n. Recall that, for gln, λ = (λ1, . . . , λn) ∈ X+ if and only if

λ1 ≥ · · · ≥ λn.
Define the crystal B = {1, . . . ,n} as follows: its crystal graph is

1 2 3 · · · n− 1 n1 2 3 n−2 n−1

This specifies how the crystal operators act. We set

ϕi(j) =

{
0, if j 6= i,

1, if j = i.
and εi(j) =

{
0, if j 6= i+ 1,

1, if j = i+ 1,

and wt(1) = $1. Observe that B satisfies the condition in (4.3.2). Axiom (C4)’ and the
crystal graph imply that wt(k) = $1−

∑k−1
j=1 αj. In particular, wt(n) = −$n−1. B = B($1)

is the crystal graph associated to the irreducible Uq(sln)-module V q($1). In the specialisation
q = 1 this is the defining representation Cn of gln.

Fix n = 3. Using the signature rule (Remark 4.3.2), we can determine the crystal graph
of B⊗ B:
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1⊗ 1 1⊗ 2 1⊗ 3

2⊗ 1 2⊗ 2 2⊗ 3

3⊗ 1 3⊗ 2 3⊗ 3

1 2

1 1

2

2

2

1

The connected component

2⊗ 1 3⊗ 1 3⊗ 22 1

is isomorphic to the dual crystal B∨ = B($2) and the large connected component

1⊗ 1 1⊗ 2 1⊗ 3

2⊗ 2 2⊗ 3

3⊗ 3

1 2

1 1

2

2

is isomorphic to the crystal B(2$1). We find B ⊗ B = B($2) t B(2$1), corresponding to
the decomposition of gl3-modules V ⊗V ∼= V ($2)⊕V (2$2). In particular, using the crystal
B = B($1) we’ve obtained B(2$1). More generally, we can obtain the crystal B(k$1) as a
subcrystal of B⊗k. This is a special instance of the following result (see [66, Chapter 7]).

Proposition 4.3.6. Let λ = (λ1, . . . , λn) ∈ X+. Assume λn ≥ 0. Then, B(λ) is isomorphic
to the connected component of B⊗|λ| containing the highest weight element

n⊗ · · · ⊗ n︸ ︷︷ ︸
λn

⊗ · · · ⊗ 2⊗ · · · ⊗ 2︸ ︷︷ ︸
λ2

1⊗ · · · ⊗ 1︸ ︷︷ ︸
λ1

When (R,X) is of classical type, Kashiwara-Nakashima [78] obtained models of the
crystals B(λ), λ ∈ X+, using Young tableaux. See [66] for further details and examples.
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Example 4.3.7. The crystal graph for the crystal B($1 +$2) is given below.

2⊗ 1⊗ 1

2⊗ 1⊗ 2 3⊗ 1⊗ 1

3⊗ 1⊗ 2 2⊗ 1⊗ 3

3⊗ 2⊗ 2 3⊗ 1⊗ 3

3⊗ 2⊗ 3

1 2

2 1

1 2

2 1

Tropicalisation and positivity

In this section we will describe a ‘geometrisation’ of crystals, following Berenstein-Kazhdan
[12], [13]. We will describe a birational model of Kashiwara crystals called a geometric
crystal. Geometric crystals are varieties birational to algebraic tori, together with a collection
of birational maps that ‘model’ the combinatorial data of a Kashiwara crystal. Through the
process of tropicalisation (or ultra-discretization [111]), the geometry of the geometric crystal
is stripped away revealing the data of a Kashiwara crystal (Definition 4.3.1).

Let G be a reductive complex algebraic group with associated root datum (X,R,X∨, R∨)
and simple roots S and simple coroots S∨. Let T ⊆ G be a maximal torus.

Definition 4.3.8. A decorated geometric crystal is the data (X, γ, ϕi, εi, e
·
i, f | i ∈ I),

where X is an irreducible variety, γ is a rational morphism X → T , called the weight map,
ϕi, εi : X → A1 are rational functions, and each e·i : Gm×X → X is a unital rational action
(denoted (c, x) 7→ eci(x)) such that, for each i ∈ I, one has either

(i) ϕi = εi = 0 and the action is trivial, or,

(ii) ϕi 6= 0 and εi 6= 0, and

γ(eci(x)) = α∨i (c)γ(x), εi(x) = αi(γ(x))ϕi(x),

εi(e
c
i(x)) = cεi(x), ϕi(e

c
i(x)) = c−1ϕi(x).

Moreover, f : X → A1 is a rational function, called the decoration, on X such that

f(eci(x)) = f(x) +
c− 1

ϕi(x)
+
c−1 − 1

εi(x)
.



CHAPTER 4. CRYSTALS 85

Remark 4.3.9. Observe the analogy between the conditions defining a geometric crystal
and a Kashiwara crystal (Definition 4.3.1). For our purposes we will only be interested in
the data (X, γ, f). For general results and examples see [12], [13].

Our interest in geometric crystals is the process by which we can recover Kashiwara
crystals. This is the process of tropicalisation, which we now describe. Basically, we want
to obtain a discretisation of the data (X, γ, f) coming from a geometric crystal.

First, given a real vector space E, we construct the semi-field of polytopes in E. This
construction will be the foundation of our notion of tropicalisation. Further details and
proofs can be found in [108], [13, Section 4].

Let E be a finite-dimensional real vector space, E∗ the dual vector space. Define PE to
be the set of all convex polytopes in E, and define the Minkowski sum

P +Q := {p+ q | p ∈ P, q ∈ Q}, P,Q ∈ PE.

Then, (PE,+) is a monoid with unit {0}. For P ∈ PE, define the support function of P , to
be

χP : E∗ −−−→ R
ξ 7−−−→ min{ξ(p) | p ∈ P}.

If vert(P ) is the set of vertices of P then we have χP (ξ) = min{ξ(p) | p ∈ vert(P )}. We have
the following elementary result.

Lemma 4.3.10. The assignment

χ : PE −−−→ Fun(E∗,R)

P 7−−−→ χP

is an injective homomorphism of monoids. Here Fun(E∗,R) = {f : E∗ → R} is the set of
R-valued functions on E∗, considered as a monoid under pointwise addition.

Corollary 4.3.11. Let P,Q,R ∈ PE. Then, PE admits the canellation property: P + R =
Q+R if and only if P = Q.

For P,Q ∈ PE we define the join of P and Q to be

P ∨W := conv(P ∪Q),

the convex hull of P ⊆ Q. Hence, χP∨Q = min(χP , χQ) and, since

min(χP , χQ) + χR = min(χP + χR, χQ + χR),

we obtain the following identity in PE,

(P ∨Q) +R = (P +R) ∨ (Q+R).
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This shows that (PE,+,∨) is a semi-ring with addition ∨, and multiplication +.
Define P+

E to be the Grothendieck group of the monoid (PE,+), with generators [P ],
P ∈ PE, subject to the relation [P + Q] = [P ] + [Q]. Then, the join operation can be
uniquely extended to P+

E using the ‘quotient’ rule

([P ]− [Q]) ∨ ([P ′]− [Q′]) := [(P +Q′) ∨ (P ′ +Q)]− [Q+Q′].

Hence, P+
E is a semi-field. Moreover, the homomorphism χ : (PE,+) → (Fun(E∗,R),+)

extends uniquely to an injective homomorphism of semi-fields

χ̃ : P+
E −−−→ Fun(E∗,R)

P 7−−−→ χP

Here Fun(E∗,R) is a semi-field with the operation of ‘addition’ (f, g) 7→ min(f, g) and
‘multiplication’ (f, g) 7→ f + g. By abuse of notation we will simply write χ instead of χ̃.

We apply the above polytope algebra construction in the category of rational tori. Let
S be an algebraic torus split over Q, and define

X(S) := Hom(S,Gm), X∨(S) := Hom(Gm, S),

with canonical pairing
〈, 〉 : X(S)×X∨(S) −−−→ Z

Denote the group algebra of X(S) over Q by Q[X(S)]. The elements in Q[X(S)] can be
canonically identified with the algebra of regular functions on S. For f ∈ Q[X(S)], say
f =

∑
µ∈X(S) aµe

µ, define the Newton polytope of f

N(f) := conv{µ | aµ 6= 0} ⊆ RX(S).

The support of f is the set

supp(f) := {µ | f =
∑

µ∈X(S)

aµe
µ, aµ 6= 0} ⊆ vert(N(f)).

We have the following consequence of the definition.

Lemma 4.3.12. Let f, g : S → A1 be regular functions, both nonzero. Then,

(a) N(fg) = N(f) +N(g), and

(b) N(f + g) ⊆ N(f) ∨N(g).

Lemma 4.3.12 gives the following result.
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Proposition 4.3.13. The assignment

N : Q[X(S)]× −−−→ PE
f 7−−−→ N(f)

is a homomorphism of monoids. Moreover, N extends to a well-defined homomorphism of
abelian groups

Ñ : Frac(S)× −−−→ P+
E

f
g

7−−−→ [N(f)]− [N(g)]

By abuse of notation we will simply write N instead of Ñ .

We will now define the notion of tropicalisation for algebraic tori defined over Q. Let
S be an algebraic torus defined over Q, and set E = RX(S). We identify E∗ = RX∨(S).
Consider the following modification of the homomorphism χ : P+

E → Fun(E∗,R):

χ0 : P+
E −−−→ Fun(X∨(S),Z)

P 7−−−→ χ0
P

(4.3.3)

where
χ0
P (ξ) := min{〈p, ξ〉 | p ∈ P ∩X(S)}, ξ ∈ X∨(S).

Definition 4.3.14. Define tropicalisation (with respect to S) to be the composition

TropS := χ0 ◦N : Frac(S)× −−−→ Fun(X∨(S),Z).

If S = Gk
m is the standard torus then we simply write Tropk.

If f : S → S ′ is a rational morphism of tori, define the tropicalisation of f

Trop(f) : X∨(S) −−−→ X∨(S ′)

to be the unique function such that the following diagram commutes

X(S) ⊆ FracS× Fun(X∨(S),Z)

X(S ′) ⊆ Frac(S ′)× Fun(X∨(S ′),Z)

TropS

f∗

TropS′

Trop(f)∗

That is, Trop(f) : X∨(S) → X∨(S ′) is the unique function such that, for every λ′ ∈
X(S ′), we have an equality of functions

TropS(λ′ ◦ f) = TropS′ ◦Trop(f) : X∨(S)→ Z.

Equivalently, Trop(f) : X∨(S)→ X∨(S ′) is the unique function such that

TropS(λ′ ◦ f)(µ) = 〈λ′,Trop(f)(µ)〉, for every µ ∈ X∨(S), λ′ ∈ X(S ′).
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Example 4.3.15. Consider the rational morphism

f : G2
m −−−→ G2

m

(x, y) 7−−−→
(

x
x2+y

, xy−1
)

Write f = (f1, f2), and let e1, e2 ∈ Z2 be the standard basis with dual basis e∗1, e
∗
2. Hence,

Trop(f)(a1e
∗
1 + a2e

∗
2) = b1e

∗
1 + b2e

∗
2

must satisfy

b1 = 〈e1,Trop(f)(a1e
∗
1 + a2e

∗
2)〉

= TropG2
m

(f1)(a1e
∗
1 + a2e

∗
2)

= χN(f1)(a1e
∗
1 + a2e

∗
2)

= 〈e1, a1e
∗
1 + a2e

∗
2〉 −min (〈2e1, a1e

∗
1 + a2e

∗
2〉, 〈e2, a1e

∗
1 + a2e

∗
2〉)

= a1 −min(2a1, a2).

Similarly, we compute
b2 = a1 − a2.

Hence,
Trop(f) : Z2 −−−→ Z2

(a1, a2) 7−−−→ (a1 −min(2a1, a2), a1 − a2).

Remark 4.3.16. Observe that if we define

g : G2
m −−−→ G2

m

(x, y) 7−−−→
(

x
x2−y , xy

−1
)

then Trop(g) = Trop(f), where f is from Example 4.3.15.

Example 4.3.15 indicates that the notion of tropicalisation we have defined is the same
as the usual notion of tropicalisation appearing in tropical geometry (see [103]). We verify
this observation with the following result.

Proposition 4.3.17. Let f = (f1, . . . , fl) : Gk
m → Gl

m be a rational morphism. Then,

Trop(f) : Zk −−−→ Zl

(a1, . . . , ak) 7−−−→ (Tropk(f1)(a1, . . . , ak), . . . ,Tropk(fl)(a1, . . . , ak))

where Tropk(fj)(a1, . . . , ak) is considered to be a tropical rational function taking values in the
tropical semi-ring (see [103]). Namely, Tropk(fj)(a1, . . . , ak) is the piecewise linear function
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obtained from fj(x1, . . . , xk) by replacing

xi ←−→ ai

+ ←−→ min

× ←−→ +

÷ ←−→ −

Proof. It suffices to show that Tropk(f) is the claimed piecewise linear function, for f ∈
Frac(Gk

m) = Q(x1, . . . , xk).
Let f = g

h
with g, h ∈ Q[x1, . . . , xk]. By definition, we have Tropk(f) ∈ Fun(Zk,Z) and

Tropk(f) = χ0◦N(f), where χ0 is given in (4.3.3) and N(f) = [N(g)]−[N(h)] is the (virtual)
Newton polytope of f . Since χ0 is a morphism of semi-fields, it suffices to consider the case
when f ∈ Q[x1, . . . , xk].

Now, let f ∈ Q[x1, . . . , xk]. Then, by definition

Tropk(f)(a1, . . . , al) = χ0(N(f)) = min{(b1, . . . , bk) · (a1, . . . , ak) | (b1, . . . , bk) ∈ supp(f)}

and this expression is what we are looking for. Here · is the standard dot product on Zk.

The tropicalisation of the homomorphisms between algebraic tori will be of most interest
to us. We record some elementary consequences from the definitions.

Proposition 4.3.18. Let S be an algebraic torus defined over Q.

(a) Let λ ∈ X(S), considered as a rational function λ : S → Gm. Recall the canonical
identification X(S) ∼= HomZ(X∨(S),Z). Then,

TropS(λ) = λ ∈ Hom(X∨(S),Z) ⊆ Fun(X∨,Z).

(b) Let ξ ∈ X∨(S), considered as a rational function ξ : Gm → S. Then, for any µ ∈
X∨(Gm),

Trop(ξ)(µ) = ξ ◦ µ ∈ X∨(S).

Identifying X∨(Gm) ∼= Z, idGm 7→ 1 ∈ Z, we have

Trop(ξ)(n) = nξ ∈ X∨(S), n ∈ Z.

(c) More generally, if f : S → T is an homomorphism of algebraic tori then, for any
µ ∈ X∨(S),

Trop(f)(µ) = f ◦ µ ∈ X∨(T )
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(d) Let f : S1 → T and g : S2 → T be rational morphisms, and

fg : S1 × S2 −−−→ T

(x, y) 7−−−→ f(x)g(y)

Then, Trop(fg) = Trop(f) + Trop(g).

Proof. (a) Let λ ∈ X(S). By definition, for any µ ∈ X∨(S),

TropS(λ)(µ) = χ0
N(λ)(µ)

= min{〈p, µ〉 | p ∈ N(λ) ∩X(S)}
= 〈λ, µ〉, since N(λ) = {λ}.

(b) Let ξ ∈ X∨(S). Then, Trop(ξ) : X∨(Gm) → X∨(S) is the unique function such that,
for every µ ∈ X∨(Gm), λ ∈ X(S),

Trop1(λ ◦ ξ)(µ) = 〈λ,Trop(ξ)(µ)〉.

Then,

Trop1(λ ◦ ξ)(µ) = 〈λ ◦ ξ, µ〉, by (a),

= 〈λ, ξ ◦ µ〉, by definition of the pairing 〈, 〉.

Now, let µn ∈ X∨(Gm), µn(z) = zn. Then,

Trop(ξ)(µn) = ξ ◦ µn = ξn,

because ξ is a homomorphism.

(c) The argument is similar.

(d) Let f : S1 → T , g : S2 → T . There is a canonical identification X∨(S1 × S2) =
X∨(S1)⊕X∨(S2). For any µ = (µ1, µ2) ∈ X∨(S1)⊕X∨(S2), λ ∈ X(T ), we must have

TropS1×S2
(λ ◦ fg)(µ) = 〈λ,Trop(fg)(µ)〉.

Then,

TropS1×S2
(λ ◦ fg)(µ) = 〈λ ◦ fg, µ〉, by (a),

= 〈(λ ◦ f)(λ ◦ g), µ〉, since λ is a homomorphism,

= 〈(λ ◦ f), µ〉+ 〈(λ ◦ g), µ2〉, by definition of the pairing 〈, 〉,
= 〈λ,Trop(f)(µ1)〉+ 〈λ,Trop(g)(µ2)〉,
= 〈λ,Trop(f)(µ1) + Trop(g)(µ2)〉.

Hence, Trop(fg) = Trop(f) + Trop(g).
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Consider the rational morphism

h : G2
m −−−→ G2

m

(x, y) 7−−−→ (x, x+ y)

This map is a birational isomorphism with rational inverse (x, y) 7→ (x, y − x). However,

Trop(h) : Z2 −−−→ Z2

(a, b) 7−−−→ (a,min(a, b))

is not a bijection. In light of this example, if we want to define a tropicalisation functor on
some category of split algebraic tori (defined over Q), we need to restrict morphisms.

In [12], Berenstein-Kazhdan determined an appropriate category on which to define a
tropicalisation functor. We recall their results.

Definition 4.3.19. Let S be an algebraic torus, split over Q.

(a) Let f ∈ Frac(S)×. We say f is positive if it can be written as a quotient f = g/h,
where g, h ∈ Z>0[X(S)]. Denote the semi-field of positive rational functions on S by
Frac+(S).

(b) A rational morphism f : S → S ′ is positive if the pullback map

f ∗ : X(S ′) ⊆ Frac(S ′) −−−→ Frac+(S)

is well-defined. Denote the set of positive rational morphisms S → S ′ by Mor+(S, S ′).

Remark 4.3.20. It can be shown that f ∈ Mor+(S, S ′) if and only if f : S(Q>0)→ S ′(Q>0)
is well-defined (see [13, Section 4]).

Theorem 4.3.21 (Berenstein-Kazhdan, [12, Section 2.4]). Let T+ be the monoidal category
of algebraic tori split over Q with positive rational morphisms. Then,

Trop : T+ −−−→ Set

S 7−−−→ X∨(S)

f 7−−−→ Trop(f)

is a (covariant) functor. If we equip T+ and Set with their standard monoidal structure then
Trop is monoidal.

Tropicalisation, as we have defined it, applies to the positive rational functions on a
split algebraic torus. Therefore, we might expect to be able to apply tropicalisation to those
varieties birational to an algebraic torus. As we will see, this will be possible, but will require
our introducing a notion of positivity for varieties.
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Definition 4.3.22. Let X be a variety defined over Q.

(a) A toric chart on X is a birational isomorphism θ : S → X, for some algebraic torus S
split over Q.

(b) We say that two toric charts

θ : S → X, θ′ : S ′ → X

are positively equivalent if θ−1 ◦ θ′ is an isomorphism in T+. In particular,

θ−1 ◦ θ′ ∈ Mor+(S ′, S), and (θ′)−1 ◦ θ ∈ Mor+(S, S ′).

(c) A positive atlas on X is an positive equivalence class of toric charts on X. We will also
call a positive atlas a positive structure on X.

(d) A positive variety (X,ΘX) is a variety together with a choice of positive atlas. A
morphism of positive varieties (X,ΘX), (Y,ΘY ) is a rational morphism

f : X −−−→ Y

such that
f : X(Q>0) −−−→ Y (Q>0)

is a well-defined function, and range(f) ∩ dom(θ−1) 6= ∅, for any θ ∈ ΘY .

With these objects and morphisms, we define the category of positive varieties V+.

Example 4.3.23. (1) Let S be a split algebraic torus, defined over Q. The standard
positive structure on S is the positive structure containing idS : S → S, which we will
denote ΘS. The standard positive structure on Ak is the positive structure containing
the canonical open embedding Gk

m → Ak, which we will denote Θk. It’s straightforward
to see that, as positive varieties, Gk

m
∼= Ak.

(2) More generally, let (X,ΘX) be a positive variety, θ : S → X ∈ ΘX . Then, θ defines an
isomorphism of positive varieties (S,ΘS)

∼−→ (X,ΘX).

(3) Any homomorphism of algebraic tori is positive.

Remark 4.3.24. We will always consider an algebraic torus as a positive variety equipped
with the standard positive structure.

The importance of the notion of positivity is that it gives the correct condition to con-
struct a tropicalisation functor. As we are motivated to reconstruct Kashiwara crystals via
tropicalisation, we introduce the following definition.



CHAPTER 4. CRYSTALS 93

Definition 4.3.25. A positive decorated geometric crystal is a decorated geometric crytal
(X, γ, εi, ϕi, e

·
i, f | i ∈ I) such that X is equipped with a positive structure Θ, with respect

to which all of the maps appearing in the definition are positive (with the respect to the
appropriate standard positive structures). We will write simply (X,Θ, f) for the data of a
positive decorated geometric crystal.

The following result is an imediate consequence of the definition of a positive structure.

Lemma 4.3.26. Let (X,ΘX) and (Y,ΘY ) be positive varieties. Then, (X × Y,ΘX × ΘY ),
where

ΘX ×ΘY := {θ × θ′ | θ ∈ ΘX , θ
′ ∈ ΘY },

is a positive variety. Therefore, V+ is a monoidal category.

Consider the natural inclusion functor

T+ −−−→ V+

S 7−−−→ (S,ΘS)
(4.3.4)

Clearly, this functor is fully faithful and monoidal. Moreover, by Example 4.3.23, we
have the following result.

Proposition 4.3.27. The inclusion functor (4.3.4) is an equivalence of monoidal categories.

Consider the category V++ with objects (X,ΘX , θ), where (X,ΘX) ∈ V+ and θ ∈ ΘX ,
and morphisms being morphisms of the underlying positive varieties. By definition, the
forgetful functor

V++ −−−→ V+

(X,ΘX , θ) 7−−−→ (X,ΘX)
(4.3.5)

is an equivalence of monoidal categories. Any adjoint to this functor corresponds to a
simultaneous choice of toric chart θ : S

∼−→ X ∈ ΘX , for every (X, θX). All such adjoints
are isomorphic.

Define the functor

τ : V++ −−−→ T+

(X,ΘX , θ) 7−−−→ dom(θ)

(X,ΘX , θ)
f−→ (Y,ΘY , θ

′) 7−−−→ (θ′)−1 ◦ f ◦ θ
(4.3.6)

Then, τ is an equivalence of monoidal categories.
We will now extend the tropicalisation functor to the category of positive varieties. Let

G : V+ → V++ be an adjoint to the forgetful functor. By the discussion above, all such
adjoints are isomorphic to each other.
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Definition 4.3.28. The composition

TropG := Trop ◦τ ◦ G : V+ −−−→ Set (4.3.7)

will be called a tropicalisation functor.

Remark 4.3.29. All tropicalisation functors TropG : V+ → Set are isomorphic to each other.
For the remainder of this thesis we assume that we have fixed a choice of tropicalisation
functor and write Trop : V+ → Set (by abuse of notation).

Moreover, if f : X → A1 is a rational function then Trop(f) : X∨(S) → Z depends
only only the positive equivalence class of f . Here, rational functions f, f ′ ∈ Frac+(X) are
positively equivalent if there is an isomorphism of positive varieties h : (X,ΘX)

∼−→ (X,ΘX)
such that f ′ = f ◦ h (see [13, Section 6.1]).

We finish this section with the main result in [13], which states that the tropicalisation
of a positive decorated geometric crystal is a Kashiwara crystal. For more details see [13].

Theorem 4.3.30 (Berenstein-Kazhdan, [13]). Let (X,Θ, f) be a positive decorated geometric
crystal. Define the tropical locus of f (with respect to Θ) to be

Bf,Θ := {x ∈ Trop(X) | Trop(f)(x) ≥ 0}.

Then, the data (Bf,Θ,Trop(γ),Trop(εi),Trop(ϕi),Trop(e·i) | i ∈ I) is a Kashiwara crystal,
where we consider the tropicalised data as being restricted to Bf,Θ. The map Trop(γ) = wt
for the crystal.

4.4 Crystal structures in mirror symmetry

In this section we will demonstrate the appearance of Kashiwara crystal structures in the
Rietsch mirror family (MB, fB) to the complete flag variety LG/LB+. We will see that the
quantum structure map q and the equivariant structure map e from Definition 3.1.3 play an
essential role in these structures. Specifically, we identify the extended string cone C i(Z)
(Definition 4.2.28) as the tropicalisation of the Rietsch mirror family (MP , fP ), explicitly
recovering the inequalities defining the string cone and the λ-inequalities. The tropicalisation
Trop(q) is the highest weight map hw (4.2.18) and Trop(e) (4.2.19) is the weight map hw.
These results are inspired by, and similar to, [13]. However, our approach makes use of a
family of non-standard parameterisations θi of MB.

As usual, G is a reductive complex algebraic group with associated root datum (X,R,X∨, R∨),
and we use the notation and conventions from Section 1.3.

For w ∈ W , define the varieties

Bw
− := B− ∩N+wN+, Nw

+ := B−wB− ∩N+. (4.4.1)
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Let M := B− ∩ N+Tw0N+ be the mirror family of LG/LB+. Recall the quantum and
equivariant structure maps (Definition 3.1.3),

T M

T

q

e (4.4.2)

where
q : M = B− ∩N+Tw0N+ −−−→ T

b = ztwPu 7−−−→ t
(4.4.3)

and
e : M ⊆ B− = N−T −−−→ T

b = vs 7−−−→ s
(4.4.4)

By Section 3.1, q is a smooth trivial fibration with fibre Bw0
− := B− ∩ N+w0N+. We fix

the following trivialisation

j : T ×Bw0
− −−−→ M

(t, x) 7−−−→ π+
((
w0x

T
)−1
)
w0x

Tπ0
(
x−T

)
tw0

(4.4.5)

Lemma 4.4.1. The trivialisation j is well-defined.

Proof. We must show that

(i) if jt(x) = j(t, x) then jt(x) ∈ B− ∩N+tw0N+, and

(ii) j is an isomorphism.

Write x = zw0u. Then,

(w0x
T )−1 = x−Tw−1

0

= z−Tw0u
−Tw−1

0

Hence, π+((w0x
T )−1) = w0u

−Tw−1
0 and we have

jt(zw0u) = zTπ0(zTw0u
T )tw0 ∈ B−.

Also, we have x = vs ∈ B− = N−T and π0(x−T ) = s−1, Hence,

jt(x) = jt(vs) = π+
((
w0x

T
)−1
)
w0sv

T s−1tw0 ∈ N+w0N+t
w0 = N+tw0N+.

The inverse to j is seen to be

M −−−→ T ×Bw0
−

b = ztw0u 7−−−→
(
π0(w−1

0 b), π≥0
(
w−1

0 π−(b)
)T) (4.4.6)
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Remark 4.4.2. Observe that the trivialisation j is not the obvious choice of trivialisation
induced by multiplication. A similar trivialisation appears in [28].

For any i = (i1, . . . , im) ∈ R(w0), define

x− i : Gm
m −−−→ Bw0

−

(a1, . . . , am) 7−−−→ x−i1(a1) · · ·x−im(am),
(4.4.7)

where, for i ∈ I,
x−i : Gm −−−→ Bw0

−

c 7−−−→ yi(c)α
∨
i (c−1).

Here yi : A1 → N− is the root subgroup corresponding to the (simple) negative root −αi,
and α∨i ∈ X∨(T ).

Definition 4.4.3. For i ∈ R(w0), define

θi : T ×G`(w0)
m −−−→ M

(t, a) 7−−−→ j(t, x− i(a))

By Fomin-Zelevinsky [36], we have the following result.

Proposition 4.4.4. (a) For any i ∈ R(w0), θi is a toric chart.

(b) For i, i′ ∈ R(w0), the birational isomorphism

θi
′

i := θ−1
i′ ◦ θi : T ×G`(w0)

m −−−→ T ×G`(w0)
m

is a positive morphism. In other words, θi and θi′ are positively equivalent.

Proposition 4.4.4 implies that we can equip M with the structure of a positive vari-
ety (M,Θ0), where we define Θ0 to be the positive equivalence class of toric charts on M
containing {θi | i ∈ R(w0)}.

Recall from Definition 3.1.9 the superpotential fB

fB : M −−−→ C
b = ztw0u 7−−−→ χ(z) + χ(u)

where χ =
∑

i∈I χi ∈ Hom(N+,A1) and χi, i ∈ I, is the character of N+ uniquely determined
by

χi(xj(a)) = δija, a ∈ A1.

Define
f

(1)
B : M −−−→ C

b = ztw0u 7−−−→ χ(z)
(4.4.8)
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and
f

(2)
B : M −−−→ C

b = ztw0u 7−−−→ χ(u)
(4.4.9)

For i ∈ R(w0), we define

fB,i := fB ◦ θi, f
(1)
B,i := f

(1)
B ◦ θi, f

(2)
B,i := f

(2)
B ◦ θi, (4.4.10)

We now state the main result of this section.

Theorem 4.4.5. Let i ∈ R(w0). Then, the subset

{(λ, a) ∈ X∨ × Z`(w0) | Trop(fB,i)(λ, a) ≥ 0} ⊆ X∨(T ×G`(w0)
m ) = X(LT )× Z`(w0) (4.4.11)

equals the set of lattice points in the weighted string cone C i(Z) of the Langlands dual group
LG. More precisely,

(a) Trop(f
(1)
B,i)(λ, a) ≥ 0 are the inequalites defining RX(LT )×Ci in RX(LT )×R`(w0), and

(b) Trop(f
(2)
B,i)(λ, a) ≥ 0 are the λ-inequalities (see (4.2.20)).

Moreover, the maps q and e are positive morphisms and

Trop(q) = hw, Trop(e) = wt . (4.4.12)

Proof. First, we show the statements on the description of the weighted string cone. Let
i = (i1, . . . , im) ∈ R(w0). Then, there exists z, u ∈ N+ such that

j(t, x− i(a)) = ztw0u ∈ N+tw0N+ ∩B−.

Observe that
u = π+

(
w−1

0 j(t, x− i(a))
)
.

Hence, we have
f

(2)
B,i(t, a) = χ

(
π+
(
w−1

0 j(t, x− i(a))
))
.

Using the definition of j,

w−1
0 j(t, x− i(a)) = w−1

0 π+
((
w0x− i(a)T

)−1
)
w0x− i(a)Tπ0

(
x− i(a)−T

)
tw0

so that
π+
(
w−1

0 j(t, x− i(a))
)

= π+
(
x− i(a)Tπ0

(
x− i(a)−T

)
tw0
)
.

By definition of the transpose map we obtain

x− i(a)T = x−im(am)T · · ·x−i1(a1)T

= α∨im(a−1
m )xim(am) · · ·α∨i1(a

−1
1 )xi1(a1)

=

(
m∏
j=1

α∨ij(a
−1
j )

)
xim(bm) · · ·xi1(b1),
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where

bj = aj
∏
l<j

a
〈αij ,α

∨
il
〉

l , j = 1, . . . ,m.

Hence,

π0
(
x− i(a)−T

)
=

m∏
j=1

α∨ij(aj).

Therefore, we obtain
x− i(a)Tπ0

(
x− i(a)−T

)
tw0 = tw0xiop(c

op),

where c = (c1, . . . , cm) ∈ Gm
m is defined by

cj = (−w0αij)(t)a
−1
j

∏
l>j

a
−〈αij ,α

∨
il
〉

l , j = 1, . . . ,m,

and
π+
(
x− i(a)Tπ0

(
x− i(a)−T

)
tw0
)

= xiop(c
op)

Putting this all together, and recalling the involution i 7→ i∗ on I (see Definition 4.2.6), we
have

f
(2)
B,i(t, a1, . . . , am) = χ(u)

= χ(xiop(c
op))

=
m∑
j=1

αi∗j (t)a
−1
j

∏
l>j

a
−〈αij ,α

∨
il
〉

l .

By Proposition 4.3.18, we have, for any (λ, a) ∈ X∨ × Zm,

Trop(f
(2)
B,i)(λ, a) = min{〈αi∗j , λ〉 − aj −

m∑
l=j+1

〈αij , α∨il〉al | j = 1, . . . ,m}

Recalling that the root datum of the Langlands dual group LG is the dual root datum for
G, we see that the locus Trop(f

(2)
B,i) ≥ 0 is precisely the locus defined by the λ-inequalities

for LG (Theorem 4.2.31).
Now we obtain the inequalities defining the string cone Ci. Note that, if b = ztw0u ∈M

then
z = π+

(
w−1

0 bι
)ι

Hence, we have
f

(1)
B,i(t, a) = χ

(
π+(w−1

0 j(t, x− i(a))ι)ι
)
.

Now,

w−1
0 j(t, x− i(a))ι

=w−1
0 t−w0π0(x− i(a)T )x− i(a)ιTw0π

+((w0x− i(a)T )−1)ι
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so that
π+(w−1

0 j(t, x− i(a))ι) = π+((w0x− i(a)T )−1)ι,

and we have
f

(1)
B,i(t, a) = χ

(
π+((w0x− i(a)T )−1)

)
We can assume that G is semisimple and simply-connected (see Remark 4.2.32)). In this
situation, for any g ∈ N−TN+,

χi(π
+(g)) =

∆ωi,siωi(g)

∆ωi,ωi(g)
, i ∈ I,

where ∆uωi,vωi(g) = ωi(π
0(u−1gv)) is a generalised mino (see [36, Proposition 2.6]). Hence,

f
(1)
B,i(t, a) =

∑
i∈I

∆ωi,siωi((w0x− i(a)T )−1)

∆ωi,ωi((w0x− i(a)T )−1)
. (4.4.13)

Define the involutive antiautomorphism

τw0 : G −−−→ G

g 7−−−→ w0g
−ιTw−1

0 .

Then,
(w0x− i(a)T )−1) = x− i(a)−Tw−1

0 = w−1
0 τw0(x− i(a)ι)

and (4.4.13) becomes

∑
i∈I

∆ωi,siωi((w0x− i(a)T )−1)

∆ωi,ωi((w0x− i(a)T )−1)

=
∑
i∈I

∆w0ωi,siωi(τw0(x− i(a)ι))

∆w0ωi,ωi(τw0(x− i(a)ι))
.

We have the following formulae from [14, (4.6)],

∆uωi,vωi(x) = ∆−vωi,−uωi(x
ι) = ∆w0vωi,w0uωi(τw0(x)), u, v ∈ W, i ∈ I.

Using these formulae we obtain∑
i∈I

∆w0ωi,siωi(τw0(x− i(a)ι))

∆w0ωi,ωi(τw0(x− i(a)ι))
=
∑
i∈I

∆−ωi,−w0siωi(x− i(a))

∆w0ωi∗ ,ωi∗ (x− i(a))
.

Observe that, for any b = zw0u ∈ Bw0
− , w−1

0 b ∈ N−N+, so that

∆w0ωi,ωi(b) = 1, i ∈ I.



CHAPTER 4. CRYSTALS 100

Hence,

f
(1)
B,i(t, a) =

∑
i∈I

∆−ωi,−w0siωi(x− i(a)).

Finally, using [14, Corollary 5.9], we can compute the tropicalisation of a generalised minor:
we have

Trop(∆uωi,vωi(x− i(a1, . . . , am)) = min

{
m∑
k=1

d
(i)
k (π)ak | π is i-trail from −uωi to −vωi in Vωi

}
.

Thus,

Trop(f
(1)
B,i)(λ, a) = min{Trop(∆−ωi,−w0siωi(x− i(a))) | i ∈ I}

= min

{
m∑
k=1

d
(i)
k (π)ak | π is i-trail from ωi to w0siωi in Vωi , i ∈ I

}

and the locus defined by Trop(f
(1)
B,i) ≥ 0 is precisely the string cone Ci for LG (see Theorem

4.2.26).
We will now show that q and e are positive morphisms and

Trop(q) = hw, Trop(e) = wt .

To show that q is positive it suffices to show that the rational morphism q ◦ θi is positive,
for some i ∈ R(w0). The result follows immediately since

q ◦ θi(t, a) = t (4.4.14)

is a homomorphism. Then, Trop(q) = hw follows from (4.4.14).
The argument for e is bit more involved. Let i ∈ R(w0). Using (4.4.6), we see that

π0(x− i(a)) = π0
(
π≥0(w−1

0 π−(j(t, x− i(a))))T
)

= π0(w−1
0 π−(j(t, x− i(a))))

= π0(w−1
0 j(t, x− i(a))π0(j(t, x− i(a)))−1)

= tw0π0(j(t, x− i(a)))−1

Hence, we find

e(j(t, x− i(a))) = π0(j(t, x− i(a))) = tw0π0(x− i(a))−1 = tw0

(
m∏
j=1

α∨ij(aj)

)

Since homomorphisms are positive we see that e is positive. Denote the conjugation map

cw0 : T −−−→ T

t 7−−−→ w0tw
−1
0
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Then, by Proposition 4.3.18, we have

Trop(e) = Trop(cw0) +
m∑
j=1

Trop(α∨ij)

and, for (λ, a) ∈ X∨(T )×X∨(G`(w0)
m ),

Trop(e)(λ, a) = Trop(cw0)(λ) +

`(w0)∑
j=1

Trop(α∨ij)(a).

Making the canonical identifications X∨(T ) ∼= X(LT ), where LT ⊆ LG is the torus dual to

T , and X∨(G`(w0)
m ) ∼= Z`(w0), we obtain Trop(cw0)(λ) = w0(λ), λ ∈ X(LT ), and

Trop(e)(λ, a1, . . . , am) = w0(λ) +
m∑
j=1

ajα
∨
ij
.

The result follows.

Remark 4.4.6. A similar result to Theorem 4.4.5 is obtained by Berenstein-Kazhdan [13,
Theorem 6.15]. Their result is a consequence of the fact that (MB,Θ0, fB) can be given the
structure of a positive decorated geometric crystal ; we briefly outline their argument. By
Theorem 4.3.30, the tropical locus Bf,Θi

is a Kashiwara crystal. The fibre of Trop(q) over
λ ∈ X∨(T ) is shown to be a Kashiwara crystal isomorphic to B(λ). They then use the
following theorem of Joseph [114]: a family {Cλ | λ ∈ X∨+} of highest weight crystals, so that
cλ ∈ Cλ is a unique highest weight element, is closed if, for any λ, µ ∈ X∨+, the correspondence
cλ+µ 7→ (cλ, cµ) ∈ Cλ ⊗ Cµ extnds to an injective morphism of crystals Cλ+µ → Cλ ⊗ Cµ.

Theorem 4.4.7 (Joseph, [114]). If {Cλ | λ ∈ X∨+} is a closed family of crystals then each
Cλ is isomorphic to B(λ).

Our contribution is the explicit identification of the fibre of Trop(q) with the set B(λ)
via the extended string cone and the identification of the λ-inequalities as the tropical locus
of f

(2)
B,i.

4.5 Future directions

In this final section we describe how the crystal structure appearing on the B-model side
of mirror symmetry of partial flag varieties X = LG/LP plays a conjectural organisational
role with regards to certain integrable systems appearing on the A-model side of mirror
symmetry for symplectic reductions of X. This will be the focus of future work. We focus
on the case of polygon spaces Pr,n to be explicit. For background on completely integrable
systems see [60].
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r ΞR

∆Γ

∆Γ(r)

Figure 4.1: Relation between the moment polytopes Ξ, ∆Γ and ∆Γ(r).

Recall Examples 2.2.4, 2.4.6 and the construction of the polygon space Pr,n by symplectic
reduction of GrC(2, n). Assume that R := |r| ∈ Z>0, and suppose GrC(2, n) = PGLn(C)/LP
admits Kahler form corresponding to Rα∨2 .

In [113, Section 3], Noharu-Ueda construct a family of completely integrable systems ΨΓ :
GrC(2, n)→ R2(n−2) parameterised by triangulations Γ of some fixed n-gon Π. The functions
in ΨΓ are in bijection with n− 1 consecutive edges of Π and the n− 3 diagonals defining Γ.
Moreover, the integrable system ΨΓ descends to an integrable system ΦΓ : Pr,n → Rn−3 of
the symplectic reduction Pr,n (these are the bending systems in [63]).

Let ∆Γ ⊆ R2(n−2) be the moment polytope of the integrable system ΨΓ. Let (u1, . . . , un−1)
be the coordinates on R2(n−2) corresponding to (n− 1) consecutive edges, and (v1, . . . , vn−3)
the coordinates corresponding to the diagonals in Γ. Then, the moment polytope of ΦΓ is
shown to be the following subset of ∆Γ

∆Γ(r) := {(u1, . . . , un−1, v1, . . . , vn−3) | (u1, . . . , un−1, |r| −
n−1∑
i=1

ui) = r}

Recall the moment polytope ΞR from Example 2.4.6. Thus, r ∈ ΞR. The above discussion
is summarised in Figure 4.1.

For a particular triangulation Γ0 of Π, Noharu-Ueda show ([113, Example 4.1]) that
ΨΓ0 is equivalent to the Gelfand-Tsetlin system [61] and that the moment polytope ∆Γ0 is



CHAPTER 4. CRYSTALS 103

equivalent to a Gelfand-Tsetlin polytope GT
(R)
P consisting of all Gelfand-Tsetlin patterns

R λ
(n−1)
2

λ
(n−1)
1 λ

(n−2)
2

. . . . . .

λ
(3)
1 λ

(2)
2 0

λ
(2)
1 λ

(1)
2

λ
(1)
1

(4.5.1)

Recall that each subtriangular array

λ
(j)
1 λ

(j−1)
2

λ
(j−1)
1

corresponds to the relation λ
(j)
1 ≥ λ

(j−1)
1 ≥ λ

(j−1)
2 .

Recall the mirror family (MP , fP ) and explicit formula for the superpotential fP from
Section 3.4. By Proposition 3.4.9, there is a monomial transformation of (C×)2(n−2) such
that the superpotential takes the form

fP =
∑

a∈GTP

zh(a)

zt(a)

. (4.5.2)

Here GTP is the Gelfand-Tsetlin quiver of shape P . The tropical locus of fP with respect to
the z-coordinates is now seen to be precisely the space of Gelfand-Tsetlin patterns of shape
P . Namely, Trop(fP )(λ, Z

(j)
i ) ≥ 0, where (λ, Z

(j)
i ) ∈ X∨(Z(LP ))× Z2(n−1), if and only if

λ Z
(n−1)
2

Z
(n−1)
1 Z

(n−2)
2

. . . . . .

Z
(3)
1 Z

(2)
2 0

Z
(2)
1 Z

(1)
2

Z
(1)
1
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is a Gelfand-Tsetlin pattern. In particular, fixing λ = Rα∨2 we obtain the Gelfand-Tsetlin
patterns in (4.5.1).

We now describe a project for further research.
Recall the quantum structure map q and the equivariant structure map e for (MB, LB)

(Definition 3.1.3). Let λ = Rα∨2 ∈ X∨(LP ) ∩ X∨+. Then, by Theorem 4.4.5, Trop(q) is
the highest weight map for the extended string cone, and Trop(e) is the weight map. By

[1, Section 5], ∆λ := Trop−1(λ) is equivalent to the polytope GT
(R)
P . Hence, ∆λ can be

identified with ∆Γ0 . Now, Trop(e)(∆λ) is the convex hull of W ·λ ⊆ RX. By Theorem 2.3.3,
this is precisely the moment polytope ΞR. This situation (occuring on the B-model side) is
similar to that described in Figure 4.1 (on the A-model side). This motivates the following
conjecture.

Conjecture 4.5.1. Under the identification ∆λ = ∆Γ0 , the moment polytope ∆Γ0(r) ⊆ ∆Γ0

is equal to Trop−1(r̂) ∩∆λ

Conjecture 4.5.1 is similar to work of Rietsch-Williams [117].
If r̂ is integral then we have the following heuristic interpretation of Conjecture 4.5.1:

the lattice points of the moment polytope ∆Γ0(r) of the weight variety Pr,n is equal to the
dimension of the r̂-weight space in the irreducible representation V (Rα∨2 ) of PGLn. Similar
results have been obtained via different methods in [62].

Additionally, it would be interesting to determine if this observation can be extended to
more general weight varieties.
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