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 Wallis' s Product,
 Brouncker's Continued Fraction^

 and Leibniz s Series

 Jacques Dutka

 Communicated by M. Kline

 Abstract

 A historical sketch is given of Wallis's infinite product for 4/a, and of the at-
 tempts which have been made, over more than three centuries, to find the method
 by which Brouncker obtained his equivalent continued fraction. A derivation
 of Brouncker's formula is given. Early results obtained by Indian mathematicians
 for the series for tt/4, later named for Leibniz, are reviewed and extended. A con-
 jecture is made concerning Brouncker's method of obtaining close bounds for jr.

 1. Wallis's Product

 In 1656, the largely self-taught Oxford mathematician, John Wallis (1616-
 1703) published his greatest work, the Arithmetica Infinitorum. By reformulating
 and systematizing the largely geometric methods of his predecessors, particularly
 J. Kepler, R. Descartes and B. Cavalieri, in (what would now be called) more
 analytic terms, he was able to develop techniques which permitted the quadrature
 and cubature of certain classes of curves and surfaces. His general mode of proce-
 dure, perhaps stemming from his experience in cryptanalysis (as a practitioner of
 which he was one of the most outstanding in history), was to rely upon analogy
 and induction. From particular numerical examples, supplemented perhaps by
 analogical extensions, heuristic rules would be developed which would later be
 formalized as propositions, without deductive proofs. His bold inductive approach,
 coupled with his generally correct mathematical intuition, led to numerous inter-
 esting results, and had considerable influence on his successors, including Isaac
 Newton and Leonhard Euler.

 The last part of his book is devoted to the millenia-old problem of the quadra-
 ture of the circle,1 and culminates in an expression for the reciprocal of the ratio

 1 Some extracts, in English, are given in A Source Book in Mathematics, 1200-1800,
 edited by D. J. Struik, Cambridge, Mass., 1969.
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 116 J. DŮTKA

 of the area of a circle to that of the square of a diameter which may be put as

 4 3 3 5 5 7 7.

 in which the partial products are alternately in excess and defect.2
 Within a few decades, Wallis's methods were largely superseded by the more

 efficient methods of the calculus, independently developed by Newton and
 G. W. Leibniz. Nowadays, Wallis is seldom mentioned in standard texts on
 advanced calculus, except in connection with the determination of the constant
 in James Stirling's approximation for factorial n. Relatively little known, how-
 ever, is the fact that Wallis's formula (1.1) can be used to derive Stirling's approx-
 imation.3

 2. Brouncker's Continued Fraction

 Before the completion of his book, Wallis induced his friend, Lord William
 Brouncker (16207-1684), afterwards the first president of the Royal Society,
 to investigate his expression (1.1) for 4/jr. Brouncker's reply was in the form of
 (the reciprocal of) a continued fraction expansion

 íL = _L_L2lj>L (2/1 - d2
 4 = 1+2+2+2+'" +2+ '"' l ' '

 which he gave without proof (and some numerical approximations which will be
 discussed in Section 4). Wallis attempted to outline a method by which he
 thought Brouncker's result had been obtained.4

 It is convenient at this point, before continuing the historical narrative further,
 to discuss a closely related infinite series representation for tz/4, and to develop
 some properties of the continued fraction in (2.1) which will subsequently prove
 useful.

 In 1671, James Gregory in a letter to John Collins5 gave the equivalent
 of the series

 x3 xs x1
 arc tan x = x - - + -

 2 As early as 1593, an infinite product expansion for n/2 in terms of a sequence of
 square roots had been given by François Viète. But Wallis's remarkable expression
 of a purely geometric ratio in terms of natural numbers in a Greek fret pattern, aroused
 considerable interest. About 1730, it became for Euler the starting point for his develop-
 ment of the gamma function.
 3 J.-A. Serret, "Sur l'évaluation approchée du produit 1 • 2 • 3 • . . . • x, lorsque x

 est un très-grands nombre, et sur la formule de Stirling," Comptes Rendus de V Académie
 des Sciences, T. 50, (1860), 662-666. H. Jeffreys &B. Swirles, Methods of Mathematical
 Physics, 3rd ed., Cambridge, 1956, 468.
 4 See Proposition CXCI of the Arithmetica Infinitorum and what follows.
 5 See James Gregory Tercentenary Memorial Volume, edited by H. W. Turnbull,

 London, 1939, 168-176.
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 Wallis's Product, Brounckcťs Continued Fraction, Leibniz's Series 117

 (- 1 ^ x ^ 1), which he presumably obtained by the equivalent of integrating
 1/(1 + x2). (This was just one of many notable results obtained by him, and
 gradually disseminated among a small group of British mathematicians, but not
 published until long after his premature death in 1675.) Sometime during the
 autumn of 1673, Leibniz, in the course of some researches on the quadrature of
 segments of conic sections6, obtained the series

 7-'-T+T-Ý + - (2-3)
 and communicated it to Christiaan Huygens and other friends. It was not until

 1675 that he learned from Henry Oldenburg, one of the first secretaries of the
 Royal Society, that his series was only a particular case ofthat obtained previously
 by Gregory.7

 If a method of Euler for transforming a series into an equivalent continued
 fraction8 is applied to the series in (2.3), a continued fraction is obtained which is
 identical with that in (2.1), and thus a proof of Brouncker's result follows.

 But for later application in Section 4, it is convenient to obtain directly the
 relations between the partial convergents of the continued fraction and the partial
 sums of the series.

 The numerator and denominator of the nth partial convergent of the continued
 fraction in (2.1) satisfy the recursion equations

 Pn = 2Pn-l + (2n - 3)2 Pn-2 ' ^ 0 „ ~

 respectively, with initial conditions

 Po =0, Pi = l; ft = 1> (Ti = 1. (2.5)

 From this it can be verified that

 /,(I = (2/I-l)^_I+(-l)-1(2«-3)!! '
 «, = <2»-I)H )' M-2'

 and that

 A_(*_I)II(I4+4._...+££) i nži

 6 An absorbing account describing the mathematical researches of Leibniz (and
 others), during a very creative period, is given in a book by J. E. Hofmann, Leibniz in
 Paris 1672-1676, Cambridge, 1974.

 7 A history of earlier developments of this series by Indian mathematicians is out-
 lined in Section 4.

 8 See e.g., A. N. Khovanski, The Application of Continued Fractions ..., Groningen,
 1963, 14-15.
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 118 J.DUTKA

 Thus for n ^ 1, the relations sought are

 /Vh 1 I2 32 {In - I)2 _ 1 1 (-1)*
 ^-ÏT2T2T-+-T~~ _ -1"T + y--+2^TT = ^ (16)
 Let n->oo and apply (2.3) to get (2.1).

 How did Brouncker actually obtain (2.1)? This question has intrigued mathe-
 maticians and historians for more than three centuries. Euler's proof and that
 developed above depend on a knowledge of Leibniz's series- a result which was
 obtained years after Brouncker had stated (2.1), and which presumably was
 unknown to him when he investigated Wallis's product (1.1).

 As mentioned above, after receiving Brouncker's result Wallis attempted
 to develop a proof in which the key idea is the following theorem:

 If a is a positive integer, a ^ 2, and K(x) is the continued fraction,

 *(x) = *+¿+e¿-' then a2=K(a-V'K(a + V- i2-7)

 Wallis seems to have obtained this by induction from some numerical
 results. If (1.1) is rewritten in the form

 4 . 3 • 3 • 5 • 5 ... (2« + 1) • (2« + 1)
 - - = lim . ^ - - - - - - - - ^ - - -
 n »+°° 2-4-6-6...(2n)-(2n + 2)

 _. jó-6-10- 10... (4n + 2) -(4« + 2) 1
 _. = i^2 4-4-8-8...(4n)-(4«) 4/J + 4'

 and a in (2.7) is replaced by 2, 4, 6, . . . , An + 2, successively, since lim K(4n + 3)/
 (4n + 4) = 1, one gets "~i"°°

 4 - - i™ *W rm ' K Kn^)'K{l)K{9)'K{'') V>
 ^ - - ££ i™ *W rm ' K V> K(3)-K(5) K(l)-K(9)

 K(4n + l)-K(4n + 3) 1
 "" K(4n - 1) • K(4n + 1) 4n + 4 U>

 i.e., Brouncker's result.
 Later, Euler, though he believed it improbable that this was the method by

 which Brouncker obtained (2. 1),9 repeatedly but unsuccessfully tried to prove
 (2.7). 10 It was not until more than two centuries after Wallis stated his theorem
 that G. Bauer,11 using methods of the theory of determinants, proved a general
 theorem which includes (2.7) as a particular case.

 9 See L. Euler, "De transformatione seriei divergentis . . .," Opera Omnia, Ser. I,
 T. 16, P. L Zürich, 1933, 34-46, particularly 43-44.

 10 A summary of Euler's related work is given by A. Speiser in G. Faber's "Ueber-
 sicht über die Bände ...," T. VI, XCVII-CV, in Opera Omnia, Ser. I, T. 16, P. 2, Basel,
 1935.

 11 Von einem Kettenbruche Euler's und einem Theorem von Wallis." Abh. d. II

 CL d. Bayerischen Akad. der Wiss. Bd. 11, Abt. 2 (1872), 96-116.
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 Wallis's Product, Brouncker's Continued Fraction, Leibniz's Series 119

 3. A Derivation of Brouncker's Continued Fraction

 In the late nineteenth and early twentieth centuries, in their works on the
 history of mathematics, R. Reiff and M. Cantor evaluated Wallis's method of
 proof and concluded that it was too artificial to be the manner in which Brouncker
 obtained his result- a view which was also espoused by A. von Braunmühl and
 J. Tropfke. But about the middle of this century, contrary opinions were expressed
 by V. Brun,12 J. E. Hofmann13, and D. T. Whiteside14 who gave proofs and
 discussions of results associated with (2.7). Pending the discovery of new evidence,
 no resolution of this question can be made.15

 A derivation of Brouncker's continued fraction is given here. It consists
 of (i) transforming an infinite product expansion (3.3), which includes an equi-
 valent of Wallis's, into an infinite series of partial fractions (3.5), (ii) developing
 a recursion formula for an auxiliary function (3.8) associated with the sum of
 partial fractions (3.7), (iii) using the recursion formula to obtain a continued
 fraction (3.11), from which Brouncker's result follows. While the details of this
 derivation are presented in modern form- beyond the ken of seventeenth century
 mathematicians- the writer believes that an analyst of Brouncker's caliber could
 have developed the formal steps outlined above.

 Wallis's product (1.1) is sometimes written as

 JL=r *?±1£* {2n) ' {ln)
 2 /¿™ 1-3 3-5 5-7 "" (In - 1) • (In + 1) * ( 3 '

 An expression which includes this will be obtained as the limit of a finite product.

 Since for | *| < 1, T(l + n + x) = T(l + x) f[ (k + x),
 k = l

 M f(ñ ) =
 M f(ñ ) = (22-t2)(42-t2)...

 (3.2)
 Now T(l - //2) • T(l + tß) = (nt/2)jsin(nt/2). Thus

 m = ÄS,-«0 = ¡hü^2) J!^ r(l+n-t/2)-r(l+n + t/2)

 -'/J3 ('-*?)• (33>
 12 V. Brun, "Wallis's og Brouncker's formier for rì' Nor disk Matematisk Tidsskrift

 Bind 33 (1951), 73-81.
 13 J. E. Hofmann, "Über Brounckers Kettenbruchentwicklung für Quadratzahlen,"

 Monatsber. der Akad. der Wiss. Berlin, Bd. 2 (1960), 310-314.
 14 D. T. Whiteside, "Patterns of Mathematical Thought in the later Seventeenth

 Century," Archive for History of Exact Sciences, Vol. 1 (1960), 179-388. See particularly
 210-213.

 15 In a footnote on p. 212 of the preceding reference, some unpublished letters of
 Wallis to Brouncker are mentioned which may contain new information.
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 120 J. Důtka

 which for / = 1 yields (3.1). The partial fraction decomposition of fn(t) is

 where the product in the denominator on the right is composed of the factors

 ÏÏ (s -r)(s + r) = (-I)'" * (r - 1)! (2r - l)!/r!,

 II (* - r) (j + r) = (» - r)! (« + r)!/(2r)!.
 Thus

 /(»-2Ž U) (-ir'w!w!
 U) ,tí(n-r)!(» + r)!(2r)»-/*

 » (-ly'nlHl X2 nd, ^4; - +r-e,(« -r)'(n -r)' (2rf - t> " nd, ^4;
 Let n -> oo. The series on the right in (3.4) becomes the de la Vallée Poussin
 sum of a convergent series.16 Thus/(i) can be represented as the sum of a series
 of partial fractions17

 (3.5)
 or, in terms of the function,18

 ßi?c) = Ž 7^7 ; * * 0, -1, -2, ..., (3.6)
 fit) takes the form

 ™-Ý-[>(Ý)+>('-t)]-
 A recursion formula for x • /?(*), from which a continued fraction can be

 developed, can readily be obtained. From (3.10),

 x-ß(x) +x-ß(x + l) = l, (x + l)-ß(x + l) + (x + l)-ß(x + 2) = l,
 whence

 x-ß(x)=ß(x + 1) + (x + l)-ß(x + 2) (3.8)

 16 See e.g., G. H. Hardy, Divergent Series, Oxford, 1949, 88, 92-93.
 17 A direct but non-rigorous transformation of an infinite product, similar to /(/),

 into the sum of an infinite series of partial fractions was given by K. H. Schellbach,
 "Die einfachsten periodischen Functionen," Jour. /. d. r. u. ang. Math., Bd. 48 (1854),
 207-236.

 18 See N. Nielsen, Handbuch der Theorie der Gammafunktion, repr. Chelsea,
 1965, 16.

This content downloaded from 140.233.2.214 on Mon, 23 Oct 2017 15:57:11 UTC
All use subject to http://about.jstor.org/terms



 Wallis's Product, Brouncker's Continued Fraction, Leibniz's Series 121

 and

 ß(x) (x + 1)2

 (X + i)W+2)
 On substituting for jc the values x + l,x+2, ...,x + n - Ì, successively in
 the last equation, one gets

 ß(x) _ + (x + I)2 (x + If (x + 3)2 (x + n)2 ß(x + l) _ + 1+ 1+ 1+ - , N ß(x + n) •
 + (* + , ») N ß(x+n + l)

 Now x-ß(x)lß(x + 1) = -x + l/ß(x + 1). On substituting this in the last
 equation and then replacing x by x - 1 and rewriting, one gets

 1 X (X+1)2 (X+n-})2

 + (* + »-!) ^^.j
 By a theorem of Pringsheim19, the continued fraction

 1 x (x + 1)2 (x + n)2
 1+1+ 1+ ••• 1+ "•

 converges for x > 0. Thus for jc > 0,

 x iUri 1 X "(* + 02(* - + 2)2(s - + 3)2 „im (3-10) x ^^)=î+îT-rf iUri - ï+ - r+--- „im (3-10)
 Substitute x = 4- in the last equation and simplify. Then

 1 /1' 1 I2 32 52 72

 T^lTJ=T+2T2T2+2+- (3-n)
 and from (3.7), and (3.1), one has the equivalent of Brouncker's continued frac-
 tion.

 4. Leibniz's Series

 The series

 n 1 1 (-1)"

 which has already been mentioned in Section 2, is, to paraphrase Leibniz, perhaps
 the simplest theoretical formula involving n which has been obtained. But the
 direct use of this series for the computation of approximations to n is impractical,
 for the error involved in approximating n/4 by the wth partial sum of the series

 19 See (8), p. 45.
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 122 J. Důtka

 is numerically less than 1/(2« + 1). Hence, to obtain m correct decimal places
 in an approximation, a partial sum of at least 5 • KT""1 terms must be evaluated.
 Because of the slow convergence of (4.1), and of the alternating harmonic series
 for In 2, for more than three centuries these have become favorite test examples
 for writers who wished to exhibit the efficacy of techniques developed by them for
 accelerating the convergence of series and sequences.
 In 1835 C. M. Whish, of the East India Company, described the quadrature

 of the circle and related infinite series which appeared in four Hindu Sastras.20
 He quoted the remarkable proportion, equivalent to 104348: 33215, as an approx-
 imation to n. (This ratio, which is correct to nine decimals and errs in excess,
 is equal to the sixth partial convergent in the continued fraction expansion of n.)
 He also mentioned various series for n, including the equivalent of (4.1) and asso-
 ciated convergence factors. The earliest of the series developed by the Indian
 mathematicians appears to date from the beginning of the sixteenth century.
 Although WfflSH's memoir was noted by S. Rigaud,21 the work of the Indian

 mathematicians was not noticed in any of the standard histories of mathematics
 for more than a century. In 1944, K. M. Marar & C. T. Rajagopal wrote "a
 sequel" to Whish's memoir22 which was followed up by three expository articles
 published in Scripta Mathematica in 1949, 1951, and 1952. The work of the
 Indian mathematicians was reviewed by Jos. E. Hofmann,23 who also gave
 plausible reconstructions of empirical bases for some of their results.
 As approximations to jf/4, the Indian mathematicians gave the equivalents

 of

 Nn = s'èrr + r-; n = l> 2> 3> - (4-2)
 where Tn is a correction term. For Tn9 the increasingly accurate functions

 (-D* (-I)"* (-I)"n2 + 1 ( l . An ' An2 + 1' n(An2 + 5) ' l ( '
 were given. From this follows the series

 Ni + Ž(tf*+i-tf*), (4.4)
 k = '

 which converges much more rapidly to n/A than (4.1).
 (The idea of approximating the sum of an infinite series by an nth partial sum

 plus a correction term was used by Archimedes in his treatise on the quadrature

 20 "On the Hindú Quadrature of the Circle, and the infinite Series of the proportion
 of the circumference to the diameter exhibited in the four Sastras, the Tantra Sangra-
 ham, Yucti Bhásá, Carana Padhati, and Sadratnamála," Trans, of the Royal Asiatic
 Society of Great Britain and Ireland, Vol III (1835), 509-523.

 21 Correspondence of Scientific Men of the Seventeenth Century, Oxford, 1841,
 Vol. 2, 590-591.

 22 "On the Hindu Quadrature of the Circle," Jour, of the Bombay Branch of the
 Royal Asiatic Society. N.S. Vol. 20 (1944), 65-82.

 23 "Über eine altindische Berechnung von n und ihre allgemeine Bedeutung,'*
 Mathematisch-Physikalische Semesterberichte. Bd. 3 (1953), 193-206.
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 of the parabola.24 He obtained the equivalent of a sequence {A J with Ak = 4AkJri ;
 00

 k = 1, 2, 3, ..., and then showed that 2 ¿k could not be greater or less than

 ÍAk + AJ3=4Aí/3.

 Two millenia later, Newton, in his letter of 24 October 1676 to Oldenburg
 for Leibniz, considered the problem of accelerating the convergence of (4. 1).25
 He proposed the equivalent of taking Tn = (-1)72/(2« + 1) in (4.2), and he also
 suggested the use of the simpler series (from a computational standpoint),

 7 +y~Î5+Ï7~23+25"3Î + 33' etC"

 which is to (4.1) as 1 + |/2 is to 2. This series is the arithmetic mean of (4.1)
 and

 i + 2. l l _ r l + x2 _ 1 r dx
 1+T + T-- + T + --JTTŠdx=Tji _ _ i+xfi + X2-
 There is no evidence that the work of the Indian mathematicians outlined above

 was known in Europe in the seventeenth century, but, in his investigation initiated
 at Wallis's request, Brouncker encountered a closely related problem. The
 continued fraction (2.1) given in the Arithmetica Infinitorum is as it stands, of
 little value for computational purposes. But directly following the statement of
 this, some continued fraction approximations are given whose significance appears
 to have been overlooked in the standard works on the history of mathematics
 in this period. These are

 , t 1 19 1 9 25 1 9 25 49
 U+T'1+2Ty'1+2+2+-' , t and 1+2+2+2TT' (4-5>
 and are alternately smaller and greater than Wallis's ratio 4/n. On rewriting this,
 one finds a general approximation to n/4, essentially equivalent to (4.2), in the
 form of a continued fraction

 J_ililil + (2» - 1)2 1+2+2+ 2+"' + 2 + u{n) ' (4'6)
 where, in this case, u(n) = In - 1. Thus on substituting, one gets from (2.6)

 2«-l

 pn+1 + {In - ')pn _ Sn + 2^+lSn-1 + (-1)" qn+i+(2n-l)qn _ . , 2a-l " Ä-1 + An > (4*7>
 1+2^+l ,

 24 The Works of Archimedes, edited by T. L. Heath, repr. Dover, 1953, cxliii, and
 233-252.

 25 The Correspondence of Isaac Newton, Volume II, 1676-1687, edited by H. W.
 Turnbull, Cambridge, 1960, pp. 140, 156.
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 124 J. Důtka

 which is identical to the first of the approximations to n/4 found by the Indian
 mathematicians in (4.3). Brouncker has, in effect, in (4.5), introduced a conver-
 gence factor in a continued fraction- a concept which was apparently not used
 again until rediscovered by J. J. Sylvester in connection with a closely related
 problem, more than two centuries later.26
 A general result for the remainder after n terms in (4.1) and for u{n) in (4.6)

 is readily obtained:

 t4KŤ)4K1)-<-"(»4)]+^(»4)-<-)
 The continued fraction expansion of the remainder is27

 W + T^k&TO-]. *»
 in which the first three convergents are given in (4.3), and it also follows in (4.6)
 that

 K«)=TÍ-TY-(2« + l) = (2«-l)+2[iÍ:ÍÍ:¿...]. (4.10)
 ß[n+T)

 (The above procedure can, in principle, yield arbitrarily accurate approxima-
 tions, but its computational utility is limited. For this purpose, e.g. the substitu-
 tions of the series28

 twß(n+±'=£VY

 2 P'^2j 2 £0(2n

 is preferable.)
 A remarkable geometric representation of Leibniz's series (4.1) was given by

 V. Brun.29 The relation of the series to a problem in number theory is discussed
 by W. Sierpinski.30

 5. Brouncker's Computation of ¿r

 After the publication of Wallis's Arithmetica Infinitorum, various (valid)
 criticisms were made by Christiaan Huygens and Pierre de Fermât. Wallis
 replied to Huygens,31 and similarly to Sir Kenelm Digby32 (the intermediary

 26 "Note on a new continued fraction applicable to the quadrature of the circle."
 Collected Mathematical Papers ..., Vol. II (1854-1873), 691-693.
 27 See, e.g. N. E. Nörlund, "Fractions continues et différences reciproques,

 Acta Mathematica, T. 34 (1911), 106 (34).
 28 See footnote 18, p. 246 (7).
 29 V. Brun, "Leibniz' formula for n deduced by a "mapping" of the circular disc,

 Nordisk Matematisk Tidskrift, Bind 18 (1970), 73-81.
 30 Elementary Theory of Numbers, Warsaw, 1964, 356-357 and 434.
 31 Oeuvres Complètes de Christiaan Huygens, T. 1, La Haye (1888), 476-480 and

 494-495. (Letters of 22 August and September 1656.)
 32 Commercium Epistolicum, Oxford, 1658. (Letter V of 6 June 1657.)
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 Wallis's Product, Brounckeťs Continued Fraction, Leibniz's Series 125

 in his correspondence with Fermat). To the latter he wrote, "I am not too dis-
 quieted concerning the truth of my propositions" since Brouncker had been
 enterprising enough to make a numerical verification. For the ratio of the circum-
 ference to the diameter (of a circle) he had found it to be

 more than 3.14159, 26535, 69+ '

 less than 3.14159, 26536, 96+ j t0 *' (5mï>

 which agreed with values found by others, and in continuing the computation he
 obtained ratios which were alternately in excess and in defect.

 No direct evidence is available concerning the method used by Brouncker to
 obtain the approximations (5.1) to the indicated accuracy. The use of Wallis's
 product (1.1) or Brouncker's continued fraction equivalent (2.1) for this is
 computationally infeasible. But a possible answer to this question can be obtained
 by iterating a method of obtaining (4.7), the equivalent of Brouncker's continued
 fraction approximations (4.5).

 In (4.7), the term (-1)74« may be regarded as the sum of a geometric series
 00

 approximation to 2 ak where ak = (- l)*/(2fc + 1). Thus
 k=n

 Sn-ì+^-Sn-ì + l-{aJan_ì)-S^+Z^n' (5-2)
 From this and (4.4), there follows

 Let S{n-' denote the sum of the first n terms on the right. On proceding as above,
 one obtains approximations to the sum of this series in the form

 whence a new series may be obtained, etc. But it is more convenient for compu-
 tational purposes to rewrite the expressions in (5.2) and (5.4) in the form

 where S^ = 0 for all 1. This is equivalent to Aitken's ô2 method for accelerating
 the convergence of sequences in numerical analysis which has been extensively
 developed in recent years.33

 33 See e.g., C. Brezinski, "Acceleration de la Convergence en Analyse Numérique,"
 Lecture Notes in Mathematics, Vol. 584 (1977).
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 126 J. Důtka

 If the proceduře of (5.5) is applied to the partial sums So, Sl9 ..., S15> one
 finds n = 3.141592653589 ... and

 4$4) = 3.141592653527 + < BL < 4S¿4) = 3.141592653573 +

 45Í4) = 3.141592653620 + <BV< 4S¿4) = 3.141592653719+

 where BL and Bv denote Brouncker's lower and upper bounds in (5.1) respec-
 tively.

 As mentioned above, Brouncker's actual method of obtaining (5.1) is un-
 known. But there is evidence which indicates that by about the mid-1650's,
 he had developed sophisticated series techniques, relative to the state of mathe-
 matical knowledge of the time. In a remarkable article published in 1668,34 but
 in which the principal result had been obtained at least eleven years previously,35
 he represented the quadrature of a hyperbolic segment as the sum of an infinite
 series, and thus developed the first infinite series for a logarithm36 equivalent to
 the series for In 2 mentioned at the beginning of Section 4.
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 (Received May 18, 1981)

 34 W. Brouncker, "The Squaring of the Hyperbola . . .", Philosophical Transactions
 of the Royal Society, Vol. 3 (1668) 645-649. In a preface to this is a reference to a state-
 ment by Wallis in 1657, in a monograph (see footnote 35) dedicated to Brouncker,
 concerning the latter's "quadrature of the hyperbole".

 35 J. Wallis, Adversus Marci Meibomii ..., Oxford, 1657, 2-3.
 36 By a procedure which was likely suggested by Archimedes' quadrature of a para-

 bolic segment (see footnote 24); Brouncker represented the area enclosed by an equi-
 lateral hyperbolic segment by an infinite series of areas of inscribed rectangles.
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