
WHERE THE SLOPES ARE

FERNANDO Q. GOUVÊA

Let N be a positive integer (the “level”), let k ≥ 2 be an integer
(the “weight”), and let Sk(N,C) denote the finite-dimensional C-vector
space of cuspidal modular forms of weight k and trivial character on
Γ0(N) defined over C. Elements f ∈ Sk(N,C) can be specified by
giving their Fourier expansions

f = a1q + a2q
2 + · · · =

∞∑
n=0

anq
n,

where q = e2πiz and z is in the complex upper halfplane. This expansion
is sometimes described as “the q-expansion at infinity” of the modular
form f . There exists a natural basis of Sk(N,C) consisting of forms
all of whose Fourier coefficients are in fact rational. We denote the
Q-vector space spanned by this basis by Sk(N,Q). Note that then we
have

Sk(N,C) = Sk(N,Q)⊗ C.
For each prime number p which does not divide N there is a linear

operator Tp acting on Sk(N,C), known as the p-th Hecke operator. (In
fact, the Tp stabilize Sk(N,Q).) A modular form which is an eigenvec-
tor for all of these linear operators simultaneously is called an eigen-
form; the space Sk(N,C) has a basis made up of eigenforms, and the
Fourier coefficients of these eigenforms can be normalized (by requiring
a1 = 1) to belong to a finite extension of Q.

The eigenvalues of the Tp operator encode significant arithmetic in-
formation about the modular form and various other objects which
can be attached to it (for example, a Galois representation). In our
setting, the eigenvalue of Tp acting on an eigenform f ∈ Sk(N,C) is
a totally real algebraic number whose absolute value (with respect to
any embedding of Q into C) is between −2p(k−1)/2 and 2p(k−1)/2. If we
normalize the eigenvalues by dividing by p(k−1)/2, the normalized eigen-
values are real numbers in the interval [−2, 2], and we can ask about
their distribution in that interval. The Sato-Tate Conjecture, still very
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much an open problem, predicts the properties of that distribution for
a fixed modular form f and varying p. We can also, however, fix the
prime p and consider the distribution as k →∞ of all the eigenvalues
of Tp corresponding to eigenforms of weight k. This was done by Serre
in [Ser97] and by Conrey, Duke, and Farmer in [CDF97].

The goal of this paper is to begin the study of an analogous question
in the p-adic setting by presenting a wide range of numerical data. The
unexpected regularities in the data suggest several interesting questions
that deserve further investigation.

We fix a prime number p, then, and consider the situation in a p-adic
setting. We choose an embedding of the algebraic closure of Q into the
completion Cp of an algebraic closure of Qp, and then we define

Sk(N,Cp) = Sk(N,Q)⊗ Cp,
and similarly for Sk(N,F ) where F is any extension of Qp. In the p-
adic context, it turns out that the right operator to consider is not Tp
but rather the Atkin-Lehner U operator, which can be described by its
action on q-expansions:

U
(∑

anq
n
)

=
∑

anpq
n.

If p does not divide N , this operator does not stabilize the space
Sk(N,F ), but it does stabilize the larger space Sk(Np, F ), and once
again we can consider eigenforms and the corresponding eigenvalues of
U .

Assume p - N , and let f ∈ Sk(Np,Cp) be an eigenform for U , so that
U(f) = λf . The p-adic valuation of the eigenvalue λ turns out to play
a crucial role in the p-adic theory. We shall call this valuation the slope
of the eigenform f :

Definition. Given an U-eigenform f of level Np, weight k and eigen-
value λ, we define the slope of f by

slope(f) = ordp(λ).

The name “slope” comes from the p-adic theory of Newton poly-
gons: the slopes of the eigenforms in Sk(Np,Cp) are determined by the
slopes of the Newton polygon of the characteristic polynomial of the U
operator acting on this space.

We are interested in the distribution of the slopes of the U operator
for fixed level and varying weight. (Thus, we are writing the eigenvalues
as a p-adic unit times a power of p, and then we are ignoring the
unit part.) All of our results are numerical, but we feel they are of
sufficient interest and that they raise significant questions that need to
be addressed on a theoretical level.
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Though the questions we ask are supported by a substantial amount
of numerical data, we are a little hesitant to label them as conjectures,
basically because all our data is for small values of p and of k. On the
other hand, we emphasize that the statements labeled as “Question” in
what follows are indeed supported by a considerable amount of data.

I am grateful to several people for their contributions to this work.
The main question discussed in this paper was raised by Dipendra
Prasad in conversation with the author. The computations were done
with the GP program using a modified version of a script written
by Robert Coleman. Finally, Barry Mazur, Kevin Buzzard, Jean-
Pierre Serre, David Farmer, Brian Conrey, Siman Wong, and Naomi
Jochnowitz made significant suggestions and observations at several
points.

I am grateful to NSA for a grant which offered support for the first
phase of this work. Most of the computations were done one a large SGI
machine at the Paul J. Schupf Scientific Computing Center at Colby
College; I would like to thank the college and Mr. Schupf for making
this resource available.

1. Setting up the Problem

Let p be a prime number, k ≥ 2 an even integer, and N a positive
integer not divisible by p. Let ordp be the p-adic valuation mapping,
normalized by ordp(p) = 1. For any field F of characteristic zero, we
write Sk(N,F ) to denote the F -vector space of cuspidal modular forms
of weight k for Γ0(N) (with trivial character) whose Fourier coefficients
all belong to F . We will essentially be concerned only with F = Qp,
since the Newton polygon (and therefore the slopes) can be computed
already in this context, though the eigenforms themselves may only be
defined over some extension of Qp. Our computations will be restricted
to the case N = 1 (and hence k ≥ 12), but it seems reasonable to set
up the problem for general level.

There are two natural inclusions of Sk(N,F ) into Sk(Np, F ); on
q-expansions the first is the identity mapping and the second is the
Atkin-Lehner V operator, which sends q to qp. The subspace spanned
by the images of both maps is called the space of oldforms in Sk(Np, F );
it has a natural complement called the space of newforms.

The Atkin-Lehner U operator maps Sk(Np, F ) to itself, acting on
q-expansions by

U(
∑

anq
n) =

∑
anpq

n.

This action stabilizes the space of newforms and also the space of old-
forms. It follows from the Atkin-Lehner theory of change of level (see
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[AL70]) that the action of U on newforms can be diagonalized (possibly
after extending the base field), and that all the eigenvalues are equal
to ±p(k−2)/2, and hence have slope equal to (k − 2)/2. Thus, as far
as the slopes are concerned, the interesting questions have to do with
the action of U on the oldforms. This is best understood by relating it
to the action of the Hecke operator Tp on forms of level N ; this yields
the theory of “twin eigenforms” discussed in [GM92], which we recall
briefly.

The Hecke operator Tp can be diagonalized on Sk(N,Cp). Let f ∈
Sk(N,Cp) be a normalized cuspidal eigenform, and let ap be the eigen-
value of Tp acting on f . Finally, let f1, f2 ∈ Sk(Np,Cp) be the two
images of f under the maps described above. The U operator stabilizes
the two-dimensional space generated by f1 and f2, and its characteristic
polynomial is x2−apx+pk−1. If this polynomial has two distinct roots,
the action of U on this two-dimensional subspace can be diagonalized,
and the eigenvalues will be precisely the two roots of the characteristic
polynomial. Thus, the slopes of the two resulting eigenforms can be
easily determined:

• If ordp(ap) < (k− 1)/2, the two eigenvalues have p-adic valuation
equal to ordp(ap) and k − 1− ordp(ap).
• If ordp(ap) ≥ (k − 1)/2, then both eigenvalues have p-adic valua-

tion (k − 1)/2.

It has been conjectured by Ulmer that the polynomial x2−apx+pk−1

always has two distinct roots. Specifically:

Conjecture (Ulmer). The action of Up on Sk(Γ0(Np),Qp) is semisim-
ple. In particular, the polynomial x2 − apx + pk−1 always has distinct
roots.

Coleman and Edixhoven have shown that this is true for k = 2 and
that for general k it follows from the Tate Conjecture (see [CE98]).

It is easy to see that if the polynomial has a double root then we
must have ap = ±2p(k−1)/2. For N = 1, it is possible to show that this
cannot happen.

Theorem 1. If N = 1, then ap 6= ±2p(k−1)/2, and therefore the poly-
nomial x2 − apx+ pk−1 always has distinct roots.

Proof. (Conrey and Farmer)Let f(x) be the characteristic polyno-
mial of Tp acting on Sk(1,Q). Suppose that one of the roots of f(x)
is equal to ±2p(k−1)/2. Then, since f(x) has rational coefficients and k
is even, ∓2p(k−1)/2 must also be a root of f(x). Hence, f(x) must be
divisible by x2 − 4pk−1.
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Consider first the case p 6= 3. Then one knows from [CFW00], that

f(x) ≡

{
(x− 2)d (mod 3) if p ≡ 1 (mod 3)

xd (mod 3) if p ≡ 2 (mod 3)

It is easy to see that either factorization is inconsistent with divisibility
by x2 − 4pk−1.

Finally, if p = 3, we know, from [Hat79], that

f(x) ≡ (x− 4)d (mod 8),

which again is inconsistent with divisibility by x2 − 4pk−1. Hence, no
root of f(x) can be equal to ±2p(k−1)/2.

We will always have N = 1 in the computations below, and thus
won’t need to worry about double roots. In general, whenever the
analogue of Theorem 1 holds, we can indeed read off the slopes of
U acting on the oldforms in Sk(Np,Qp) by determining the slopes of
Tp acting on Sk(N,Qp). Specifically, suppose f ∈ Sk(N,Qp) is an
eigenform for Tp with eigenvalue ap, and suppose λ′ and λ′′ are the two
roots of x2 − apx + pk−1, ordered so that ordp(λ

′) ≤ ordp(λ
′′). Then

there are two U -eigenforms f ′, f ′′ ∈ Sk(Np,Cp) such that U(f ′) = λ′f ′

and U(f ′′) = λ′′f ′′. Thus, for each slope obtained in level N one obtains
a pair of slopes α′ = ordp(λ

′) = min(ordp(ap),
k−1

2
) and α′′ = ordp(λ

′′)
in level Np, satisfying

• 0 ≤ α′ ≤ α′′ ≤ k − 1
• α′ + α′′ = k − 1

with α′ < α′′ unless they are both equal to (k − 1)/2. We define the
slope sequence for level N , weight k, and prime p to be the ordered list
of slopes

(α1, α2, . . . , (k − 1)− α2, (k − 1)− α1)

for U acting on the oldforms in Sk(Np,Qp), where we repeat slopes
that occur with multiplicity. The number of elements in this sequence
is equal to twice the dimension of Sk(N,Qp). Since the slope sequence
is symmetric under α↔ (k−1)−α, we will usually specify it by giving
only the first half of the slope sequence. Whenever ordp(ap) < (k−1)/2,
it follows from the discussion above that this first half is the same as
the slope sequence for Tp acting on Sk(N,Qp).

Since we know that the slopes are in the interval [0, k − 1] (and we
want to vary k), it makes sense to normalize the slopes by dividing
them by k − 1.
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Definition. Suppose f is either a Tp-eigenform of level N or a U-
eigenform f of level Np. Let k be the weight of f and let ap(f) be the
eigenvalue (of Tp or of U). We define the supersingularity of f by

ss(f) =
ordp(ap(f))

k − 1
.

Let f ∈ Sk(N,Cp) be an eigenform for Tp, and (assuming Ulmer’s
Conjecture is true) let f ′, f ′′ be the two old U -eigenforms corresponding
to it as above. Then, provided that ss(f) ≤ 1/2, we have

ss(f ′) = ss(f)

and

ss(f ′′) = 1− ss(f),

and both numbers are in the interval [0, 1]. Thus, the sequence of
supersingularities corresponding to old eigenforms of weight k and level
Np is a normalized version of the slope sequence, and can be computed
via the supersingularities of forms of level N , provided these are small
enough.

(One can think of ss as a function on the eigencurve studied by
Coleman and Mazur in [CM98]. It will be an continuous function on
the eigencurve, except along the k = 1 locus. Notice, however, that
classical eigenforms of weight 1 will always have slope zero; defining
ss(f) = 0 for such forms gives a continuous extension of ss to classical
forms of weight 1. No such continuous extension is possible at points
corresponding to non-ordinary forms of weight 1.)

We define the supersingularity sequence in weight k

(η1, η2, . . . , 1− η2, 1− η1)

by

ηi = ss(fi) =
slope(fi)

k − 1

as fi runs through the old eigenforms of weight k on Γ0(Np). The
supersingularity sequence is contained in the interval [0, 1] and is sym-
metric under η ↔ 1− η.

One of the main problems we want to consider is to understand the
distribution of the supersingularities in the interval [0, 1] when we fix
the level N and let k →∞. This problem can be expressed in measure-
theoretic terms, as in [Ser97]: considering N and p as fixed, for each
k we define a probability measure µk on the interval [0, 1] by putting
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a point mass at each supersingularity ηi: let dk = dimSk(N,Qp), and
set

µk =
1

2dk

dk∑
i=1

(δηi + δ1−ηi) ,

where δx is the Dirac measure at x. The question then is whether the
measures µk tend to a limit as k → ∞, and if so to determine that
limit measure. One can also consider several variants of this idea. For
example, we might study the measure given by the first half of the slope
sequence only (or, equivalently if we always have ordp(ap) < (k− 1)/2,
by the slope sequence in level N).

2. Computations

For our computations, we restricted to the case N = 1, which then
means that one only gets non-trivial results for even weights k ≥ 12.
For each prime number p ≤ 100, we computed the Newton polygon of
Tp acting on forms of weight k and level 1 for weights k ≤ 500. Since in
every case the slopes were less than (k − 1)/2, the slopes we obtained
are exactly the first half of the slope sequence for the U operator acting
on oldforms of level p, as described above.

The method used for computation was straightforward: the space of
cuspforms of weight k and level 1 has a basis consisting of forms Ea

4E
b
6∆,

where E4 and E6 are the Eisenstein series of weight 4 and 6 respectively,
∆ is the unique cuspform of weight 12, and 4a + 6b + 12 = k. Using
this explicit basis we determined the characteristic polynomial of Tp
and computed its Newton slopes, then produced supersingularities by
dividing by k − 1. The computation was done with the GP calculator
[BBCO]; the basic GP functions we needed were based on a script
originally written by Robert Coleman. The main constraint on the
computation was the memory required for computing the characteristic
polynomial: larger k meant working with a larger basis, and larger p
meant that we needed to use more terms from the q-expansion of the
modular forms. The full output of the computations can be found on
the web at

http://www.colby.edu/personal/fqgouvea/slopes/

3. The slopes are smaller than expected

As already mentioned above, in every case we found that every slope
in the Newton polygon of Tp acting on forms of level N was smaller
than (k − 1)/2. It is natural to ask whether this always happens.
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Question. Fix a prime number p. Let Sk(1,Cp) be the space of cusp-
forms of weight k and level 1. Let f ∈ Sk(1,Cp) be an eigenform, and
let ap(f) be the eigenvalue of Tp acting on f . Is it true that

ordp(ap(f)) <
k − 1

2

always?

Notice that a positive answer to this question implies that ap(f) 6= 0,
yielding a vast generalization of a famous conjecture of Lehmer about
the case k = 12. This observation also shows that any generaliza-
tion of this statement to higher level must be worded so as to exclude
forms with complex multiplication and must also be stated for weight
k sufficiently large.

4. The slopes are much smaller than expected

In fact, one sees much more. Even a cursory observation of the
tables suggests that the slopes are much smaller than one might expect.
In fact, we found that in almost every case the supersingularities for
weight k and prime p are smaller than 1/(p + 1). In other words, the
inequality

ss(f) ≤ 1

p+ 1

holds almost always for forms of level N . It follows that the sequence of
supersingularities for weight k is almost always contained in [0, 1

p+1
] ∪

[ p
p+1

, 1].

We need to be precise about what we mean by “almost always.”
What seems to emerge from the data is this: for almost all primes, the
inequality is true for every eigenform. For a few exceptional primes,
there is a thin set of weights for which we find supersingularities that
are just a bit bigger than 1/(p+ 1).

Question. Is it true that for almost all primes p the inequality

ss(f) ≤ 1

p+ 1

holds for every eigenform f ∈ Sk(1,Cp)? Equivalently, is it true that
for almost all primes p we have

ss(f) ∈
[
0,

1

p+ 1

]
∪
[

p

p+ 1
, 1

]
for every eigenform f ∈ Sk(p,Cp)?
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Prime p Weights k

59 16, 46, 76, 106, 136, 166, 196, 226, 256
286, 316, 346, 376, 406, 436, 466, 496

79 38, 44, 118, 124, 198, 204, 278, 284
358, 364, 438, 444

2411 12
15271 16
187441 16
3371 20
64709 20

27310421 26

Table 1. Known exceptions to ηi ≤ 1/(p+ 1)

To be more explicit about “almost all primes,” in our computations
exceptions to this inequality occurred only for p = 59 and p = 79; for
each of these primes, the inequality fails to hold for the highest-slope
form in certain weights. See Table 1 for the list of weights at which
exceptional slopes appear; we discuss this list of weights further below.
Other exceptions to the inequality, outside the range of this computa-
tion, can be read off from the results in [Gou97]; they correspond to
forms of weights k = 12, 16, 20 that are non-ordinary with respect to
large primes. The final entry in the table comes from a computation
by Atkin. The full list of primes and weights for which we know of a
slope that does not satisfy the inequality is given in Table 1. For each
(p, k) pair, we found that exactly one slope in the first half of the slope
sequence violates the inequality.

The structure of the table suggests that if there are any exceptional
forms for a prime p, then there will be exceptional forms of relatively
small weight, and the remaining exceptional forms will be in some sense
related to these. This suggests the question

Question. Let p be a prime. Is it true that if the inequality

ss(f) ≤ 1

p+ 1

holds when f ∈ Sk(1,Cp) and k ≤ p+ 1, then it holds for all k and all
f ∈ Sk(1,Cp)?

We will postpone the discussion of the specific list of weights for
which an exceptional form exists to a later section, and consider what
these inequalities imply about the distribution of the supersingularities
as k grows.
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Assuming an affirmative answer to the questions above, we know that
for almost all primes the measure µk is supported on [0, 1

p+1
]∪ [ p

p+1
, 1].

This is not true for the other primes. However, if we focus on the
exceptional slopes and compute the corresponding supersingularities,
we see that in our examples ss(f) seems to get closer to 1/(p + 1) as
k grows. Let p = 59, for example; the sequence of supersingularities
corresponding to the exceptional slopes in Table 1 is

0.066, 0.022, 0.026, 0.019, 0.022, 0.018, 0.020, 0.017, 0.019,

0.017, 0.019, 0.017, 0.018, 0.017, 0.018, 0.017, 0.018

Here, of course, 1/(p + 1) = 1/60 = 0.01666 . . . , and the exceptional
values of the supersingularity seem to be (slowly) approaching this
value as the weight grows.

Encouraged by this, we can try to make “almost always” precise by
using the measure-theoretic formulation:

Question. Is it true that the sequence of measures {µk} converges, as
k →∞, to the uniform measure on the set [0, 1

p+1
] ∪ [ p

p+1
, 1]?

We have checked this by computing the first five moments of µk for
our range of (p, k). The results strongly suggest an affirmative answer
when there are no exceptional forms. When exceptional forms exist,
the convergence is much slower, but it still seems reasonable that the
limit measure will be as above.

It is natural, at this point, to ask what, if anything, has actually
been proved in this direction. We know of no general results which
suggest that “exceptional” slopes are rare. For specific primes, there
are some hints. For p = 3, Lawren Smithline has shown in [Smi00] and
[Smi] that for every form of level 1 and weight k = 2 · 3a we have

slope(f) <
k

4
.

For these values of k this is in fact equivalent to our inequality

slope(f) ≤ k − 1

4
.

if we assume that all the slopes are integral (as we point out below, the
slopes seem to be almost always integral).

For p = 2, Kevin Buzzard has formulated a conjectural description
of all the slopes that implies, in particular, that the inequality

slope(f) ≤ k − 1

3



Where the Slopes Are 11

always holds for forms of level 1, i.e., that there are no exceptional
forms for p = 2. (Buzzard’s conjectural description also implies that
all the 2-adic slopes for level 1 are integral.)

These hints suggest that something is going on. It seems to us that
the fact that the inequality is so often true demands some explana-
tion. In particular, one would like to know whether there is something
special about the cases where it fails. It is natural to wonder whether
one can identify a specific property of the modular forms or the Galois
representations corresponding to exceptional pairs (p, k). See the dis-
cussion below on the possible connection to the Θ operator for more
on this.

5. The slopes are almost always integers

Perhaps one of the more surprising outcomes of the computations is
the fact that almost all the slopes we obtained are integers. Of all the
observations we make, this is the one that is most likely to be merely
an effect of the fact that we work only with small primes. The location
of the exceptions, however, suggests that something else may be going
on. Specifically, non-integral slopes occur in our computations only
for p = 59 and p = 79, the same primes for which exceptional slopes
occur. Furthermore, the fractional slopes we observe are connected to
the exceptional slopes, in the following remarkable way:

1. A weight k for which there exists exceptional form with slope equal
to 2 is preceded by a weight k − 2 for which the slope sequence
contains two slopes equal to 1/2. For p = 59, this happens for
the pairs of weights (74, 76) and (104, 106); for p = 79, weights
(116, 118), (122, 124).

2. A weight k for which there exists exceptional form with slope equal
to 3 is preceded by a weight k − 2 for which the slope sequence
contains two slopes equal to 3/2, and that weight is preceded by
a weight k − 4 whose slope sequence contains two slopes equal
to 1/2. This happens for p = 59 and weights (132, 134, 136) and
(162, 164, 166); for p = 79, weights (194, 196, 198) and (200, 202, 204).

3. A weight k for which there exists exceptional form with slope equal
to 4 is preceded by a weight k − 2 for which the slope sequence
contains two slopes equal to 5/2, that weight is preceded by a
weight k−4 whose slope sequence contains two slopes equal to 3/2,
and that weight is preceded by a weight k−6 whose slope sequence
contains two slopes equal to 1/2. This happens for p = 59 and
weights (190, 192, 194, 196) and (220, 222, 224, 226); for p = 79
and weights (272, 274, 276, 278) and (278, 280, 282, 284).



12 Fernando Q. Gouvêa

4. And so on. An exceptional form of slope n is and weight k is
accompanied by a “trail” of pairs of forms of slope

2n− 3

2
,

2n− 5

2
,

2n− 7

2
, . . . ,

1

2
and weight

k − 2, k − 4, k − 6, . . . , k − 2(n− 1)

(one pair for each weight).

These patterns can overlap without interfering. For example, there
are exceptional forms of slope 6 for p = 79 and weights 438 and 444.
Each has its trail of weights for which fractional slopes exist. Because
of the exceptional form at weight 438, there are forms of slope 1/2 at
weight 428 and at each subsequent weight, up to forms of slope 9/2 at
weight 436. Because of the exceptional form at weight 444, there are
forms of slope 1/2 at weight 434 and at each subsequent weight, up to
forms of slope 9/2 at weight 442. Hence, for example, at weight 436 we
have both a pair of forms of slope 3/2 and a pair of forms of slope 9/2.

For the complete list of slope sequences which contain either excep-
tional or non-integral slopes, see
http://www.colby.edu/personal/fqgouvea/slopes/exceptional.html

This suggests the question:

Question. How often are the slopes integral? Is it true that non-
integral slopes occur only when p is a prime for which there exist ex-
ceptional slopes?

All of the non-integral slopes we see are in fact half-integral, as the
description above shows.

6. The shadow of the Θ operator

For this section, we limit ourselves to the two primes for which we
have found exceptional and non-integral slopes, p = 59 and p = 79. As
we mentioned above, the list of weights for which exceptional slopes
occur seems to have some structure. We explore a possible connection
between the list of exceptional weights and the Θ operator.

We recall the basic facts about Θ. As above, we restrict to the case of
level N = 1. The Θ operator is the operator that acts on q-expansions
as q d

dq
, so that

Θ
(∑

anq
n
)

=
∑

nanq
n.

(If we think of modular forms as functions on the complex upper half-
plane, then q = e2πiz and Θ is just d

dz
.) As is well known (see [Gou97]),
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if f is a modular form then Θf is not a modular form, though it is
“almost” modular in some sense (the p-adic story is a little different:
see [Kat73, Gou88, CGJ95]). If we go ahead and formally compute the
Hecke operators on Θf , we see that if f is an eigenform then so is Θf ,
and that slope(Θf) = 1 + slope(f).

On the other hand, Θ does define an operator on modular forms
modulo p, in which case it maps forms of weight k to forms of weight
k + p + 1 (see [Joc82, Kat77]). The formula for the change in the
slope no longer makes sense, of course. When one considers modular
forms modulo p, one can only distinguish between forms of slope zero
and forms of positive slope. What we can say, then, is that if f is a
modular form modulo p then Θf will be a modular form modulo p and
will always have positive slope.

Finally, recall that it is possible for forms whose weight differs by
a multiple of p − 1 to have identical q-expansions. (Basically, this is
because the q-expansion of the Eisenstein series Ep−1 is congruent to
1 modulo p.) Thus, if f is a modular form modulo p, one can ask
what is the minimal weight k for which f lifts to a form of weight
k in characteristic zero. Considering how the Θ operator affects this
minimal weight leads to the theory of Θ-cycles, discussed in [Joc82].
We only need a small portion of the theory. Suppose f is a form modulo
p of positive slope and weight k, 4 ≤ k ≤ p − 1. Consider the forms
fi = Θif . It is clear that fp−1 = f (in the sense that they have the
same q-expansion; remember that all of this is happening modulo p),
so the fi form a cycle. It is natural to ask whether there are any other
values of i for which the minimal weight is small (i.e., less than p− 1).
It turns out that this happens only for i = p− k+ 1, in which case the
form fi is the reduction modulo p of a form of weight p+ 3− k.

The upshot, for us, is simply this: given a form of positive slope and
weight k < p − 1, there must also exist a form of positive slope and
weight p+ 3− k. This explains part of the data above: for p = 59, the
existence of a form of weight 16 and slope 1 forces the existence of a
form of weight 46 and positive slope; for p = 79 the existence of a form
of weight 38 and slope 1 forces the existence of a form of weight 44.
The theory does not predict that these forms should have slope 1, but
it turns out that they do. (This is not really surprising, since the slopes
tend to be integers and they also tend to be “as small as possible.”)

Notice that this whole theory refers only to modular forms modulo p.
If f is an eigenform, then all of the Θif are eigenforms modulo p; by the
Deligne-Serre Lemma (see [DS74, Lemma 6.11] or [AS86, Prop. 1.2.2]),
they lift to eigenforms in characteristic zero (but recall that the Θif
are not themselves modular forms, so the lifts will only be congruent
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to them). We know these eigenforms will have positive slope (which,
as we noted, is “visible” modulo p as the fact that U(f) ≡ 0 (mod p)),
but there seems to no reason to predict anything further about their
slope.

Nevertheless, it seems that the Θ operator has a “shadow” in char-
acteristic zero. To see this, consider the exceptional slopes for p = 59.
For the case of weight 16, the occurrence of a large slope seems to
be “accidental,” but its “propagation” to higher weights seems to be
linked to the Θ operator. Let f0 be the (unique) form of weight 16
and level 1; its 59-adic slope is 1, because its 59-th Fourier coefficient
is divisible (once) by 59. If we reduce f0 modulo 59, then its image
under Θ can be lifted to an eigenform of weight 76. This is exactly the
exceptional form of weight 76, and it has slope 2. The same pattern
continues as we iterate Θ, both starting with the form of weight 16 and
starting with the form of weight 46.

Thus, it seems that, at least in the case of forms with exceptional
slope, if we start from a form f of slope a and weight k, the Θ operator
does somehow “produce” a form of weight k + p + 1 and slope a + 1
(though of course it will only be congruent to Θf modulo p, so that
the congruence is not strong enough to explain the relation between
the slopes). If this is correct, it means that for p = 59 there will be
two infinite sequences of forms of exceptional slope, one in weights
16 + 60i and the other in weights 46 + 60i. In each sequence, the slope
is equal to i + 1 and each exceptional form is congruent modulo 59 to
the image under Θ of the previous form in the sequence. For small
enough weights, we have checked that this is indeed what happens.

The same analysis explains the two sequences of exceptional forms
modulo 79, of weights 38 + 80i and 44 + 80i. Again, the forms in each
sequence seem to represent a shadow in characteristic zero of the Θ
operator on forms modulo p.

Question. Let f be an eigenform of level 1, weight k, and exceptional
slope a. Is it true that for every integer i > 0 there exists an eigenform
fi of level 1, weight k + i(p + 1), and slope a + i, such that fi ≡ Θif
(mod p)?

One can easily compute what happens to the supersingularity along
such a family. Under the same assumptions as in the question above,
suppose

ss(f) =
a

k − 1
=

1

p+ 1
+ e,
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where, since we are assuming f is exceptional, we have e > 0. Assuming
the existence of the forms fi, set

ss(fi) =
1

p+ 1
+ ei.

Then one easily computes that

ei =
e

1 + i p+1
k−1

.

In particular, we have ei > 0 for all i, so that all of the fi are excep-
tional. Note also that ei → 0 as i→∞, as suggested in question.

It might be useful to point out that the data show that if we start
with a non-exceptional f it need not be true that a “shadow of Θf”
will exist. One can see this by simply looking at the slope sequences
at weight k and weight k + p + 1 and noting that the presence of a in
the first sequence does not necessarily imply that a+ 1 appears in the
second. So we could formulate a broader question:

Question. Let f ∈ Sk(1,Cp) be an eigenform of slope a. Under what
conditions does there exist an eigenform f1 ∈ Sk+p+1(1,Cp) which is of
slope a+ 1 and is congruent to Θf?

(Note that there always does exist an eigenform which is congruent
to Θf , so the crucial question here concerns the behavior of the slopes.)

At the level of the Galois representations attached to modular forms
modulo p, the Θ operator corresponds to a Tate twist. Thus, it follows
from the discussion above that for p = 59 or p = 79 all the forms with
exceptionally large slope are attached to Galois representations modulo
p which seem to be connected by Tate twists.

In fact, the situation is even stranger. Let us take p = 59 start
once again with the unique cuspform f of weight 16; it has slope 1.
As pointed out above, the reduction modulo 59 of Θf is an eigenform
of weight 76; its lift to characteristic zero is an eigenform of slope
2, which is therefore exceptional. We could also consider, however,
the form E58f , whose reduction modulo 59 is an eigenform of weight
16 + 58 = 74 whose q-expansion modulo 59 is identical to that of our
initial form. It too must lift to an eigenform in characteristic zero. In
fact, there are two such lifts, and both of them have slope 1/2. The
two lifts are defined over a ramified quadratic extension of Q59, and
they are Galois-conjugate and congruent to each other.

One more step will make the overall pattern clear. From Θf in
weight 76 we can go the Θ2f in weight 136; its lift to characteristic
zero has slope 3 and is therefore exceptional. We can also consider
E58Θf , which is an eigenform modulo 58 of weight 134. It has two
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lifts to characteristic zero, both of slope 3/2. Or we could look at
E2

58f , which is an eigenform modulo p of weight 132. It has two lifts
to characteristic zero, both of slope 1/2.

Once again, we have only been able to check this pattern for small
weights. What it suggests, however, is that every form on our list
whose slope is either exceptional or non-integral corresponds, modulo
p, to a Galois representation which is a Tate twist of the representa-
tion corresponding to the “initial” form of weight k < p + 1. This
reinforces the feeling that there is a connection between forms whose
slopes are unusually large and forms whose slopes are non-integral, and
that all these forms correspond to Galois representations with unusual1

properties. Why this should be the case seems completely mysterious.

Question. Is there a representation-theoretic characterization of eigen-
forms that are of exceptional or non-integral slope?

7. The slopes are too constant

Finally, we would like to observe that our computations strongly
support Kevin Buzzard’s observation (arising from his computations
for p = 2) that the slopes of oldforms seem to be far more constant
as the weight varies than one would expect. In this regard, recall that
in [GM92] we conjectured that if we looked at two (sufficiently large)
weights k1 and k2 such that k1 ≡ k2 (mod pn(p − 1)), then the slope
sequences for these two weights should be identical up to slope n. For
n = 0, this is a theorem of Hida (see [Hid86a, Hid86b]). In general,
Coleman [Col97] and Wan [Wan98] have shown that it is true if we
strengthen the hypothesis to k1 ≡ k2 (mod pM(n)(p− 1)), where M(n)
is a quadratic function of n.

What one actually sees in the data, however, is much stronger. Con-
sider, for example, the case where p = 5, n = 2, ki = 112 + 100i.
Our conjecture would predict that the portion of the slope sequences
that has slopes less than or equal to 2 would be the same for two such
weights. Table 2 gives the (lower halves) of the slope sequences for
i = 0, 1, 2, 3. What we see is that the entire (lower half of the) slope
sequence for weight ki reappears in weight ki+1. This suggests that
something immensely stronger than the conjectures in [GM92] should

1The 59-adic representation attached to the unique form of weight 16 is known
to have unusual properties. Specifically, the image of its reduction modulo 59 in
PGL2(F59) is isomorphic to the symmetric group S4; see [SD73], [SD75], [SD77],
and [Hab83]. On the other hand, we are unaware of anything unusual about the
79-adic representation attached to the form of weight 38.
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Weight k Slope Sequence (lower half)

112 (1, 5, 5, 5, 10, 11, 14, 15, 16)
212 (1, 5, 5, 5, 10, 11, 14, 15, 16,

20, 21, 24, 25, 27, 30, 31, 34)
312 (1, 5, 5, 5, 10, 11, 14, 15, 16,

20, 21, 24, 25, 27, 30, 31, 34,
36, 37, 40, 41, 45, 46, 47, 50, 51)

412 (1, 5, 5, 5, 10, 11, 14, 15, 16,
20, 21, 24, 25, 27, 30, 31, 34,
36, 37, 40, 41, 45, 46, 47, 50, 51,
55, 55, 55, 59, 60, 63, 64, 65)

Table 2. Slope sequences for p = 5

be true, at least for the slopes of oldforms. Further examples of this
behavior can easily be extracted from the data.

8. Conclusions

Our computational results suggest several surprising regularities in
the behavior of the slopes of p-oldforms for fixed p and varying k. It
is quite possible that there are still more observations to make. For
example, if it is true that the slopes for weight k are integers between
0 and (k − 1)/(p + 1), with what multiplicities do these integers oc-
cur? The data for small primes suggests that here too the behavior
is quite regular. Can one come up with a precise conjecture? Such a
conjecture would be closely related to the above conjectures about the
distribution of the supersingularities in the interval [0, 1]. One could
also consider the behavior of the slope for fixed k and varying p; in
this case, the appropriate normalization seems to be to multiply the
p-supersingularity by p + 1, so that the normalized supersingularities
will be in [0, 1]. Finally, one could ask whether one can use the data to
obtain predictions of what the non-classical slopes (i.e., the slopes cor-
responding to overconvergent p-adic modular forms of weight k) should
be.

References

[AL70] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann.
185 (1970), 134–160.

[AS86] A. Ash and G. H. Stevens, Cohomology of arithmetic groups and congru-
ences between systems of Hecke eigenvalues, Journ. Reine Angew. Math.
365 (1986), 192–220.



18 Fernando Q. Gouvêa
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