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First Thoughts for Teachers

What’s in this packet?

This packet contains a set of history-based student activities for learning about

Writing Whole Numbers
Zero
Writing Fractions
Negative Numbers

They are intended to supplement the contents of your regular math textbook. The
activities are primarily mathematical; the settings are historical. Each topic is inde-
pendent of the others, to give you flexibility in fitting them into your lessons. Each
section points out how its mathematical content fits into the math curriculum. It
also indicates what connections might be made with topics in the history curriculum.

Why use history?

To learn mathematics well at any level, students need to understand the ques-
tions before you can expect the answers to make any sense to them. To teach
mathematics well at any level, you need to help your students see the underlying
questions and thought patterns that knit the details together. Understanding a
question often depends on knowing the history of an idea:

Where did it come from?

Why is or was it important?

Who wanted the answer and what did they want it for?

Each step in the development of mathematics builds on what has come before. The
things that students need to know now come from questions that needed to be an-
swered in the past. Yesterday’s questions can help students understand,
remember, and use today’s mathematical tools to deal with tomorrow’s
problems.

Most students are naturally curious about where things come from. That curi-
osity needs to be encouraged and nurtured. It is a powerful, but fragile, motivator
for learning about anything at any level. With your help, it can lead your students
to make sense of the mathematical processes they need to know.

How can I use history to do this?

There are several ways to use history in the classroom. The most common way
to do it is simply to use stories. If chosen carefully, a story about a historical person
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First Thoughts for Teachers 3

or event can help students understand and remember a mathematical idea. The
main drawback of using stories is that often they are only distantly connected to
the mathematics.

This packet is primarily devoted to presenting student activities, so stories do
not play a major role in the material that follows. Instead, we focus on the following
ways to use history:

Overview — It is all too common for students to regard school mathematics as
a random collection of unrelated bits of information. But that is not how
mathematics actually gets created. People do things for a reason, and their
work typically builds on previous work. Historical information helps students
to see this “bigger picture.” It also often explains why certain ideas were
developed. Many crucial insights come from crossing boundaries and making
connections between subjects. Part of the big picture is the fact that these
links between different parts of mathematics exist, and paying attention to
their history is a way of making students aware of them.

Context — Mathematics is a cultural product, created by people in a particular
time and place and often affected by that context. Knowing more about this
helps us understand how mathematics fits in with other human activities. For
instance, the idea that numbers originally may have been developed to allow
governments to keep track of data such as food production embeds arithmetic
in a meaningful context right from the beginning. It also makes us think of
the roles mathematics still plays in society. Collecting statistical data, for
example, is something that governments still do!

Depth — Knowing the history of an idea usually leads to deeper understanding.
For example, long after the basic ideas about negative numbers were discov-
ered, mathematicians still found them difficult to deal with. They understood
the formal rules for them, but they had trouble with the concept itself. Be-
cause the concept was troublesome, they did not see how to interpret those
rules in a meaningful way. Learning about their difficulties helps us understand
(and empathize with) the difficulties students might have. Knowing how such
difficulties were resolved historically can also help students overcome these
roadblocks for themselves.

Activities — History is a rich source of student activities. It can be as simple
as asking students to research the life of a mathematician, or as elaborate as
a project that seeks to lead students to reconstruct the historical path that
led to a mathematical breakthrough. The activities in the worksheets of this
packet ask students to do specific things that will deepen their understanding
of particular mathematical ideas and help them practice their skills. The
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Teacher Notes also occasionally suggest some broader questions and projects
that might be appropriate from time to time, at least for some students.

What if I don’t know much history myself?

We’ll help. This booklet contains a summary of the historical background for
each topic and detailed solutions for all of the activity sheets. For an easily readable,
compact, inexpensive source of further background information, we unabashedly
suggest our own book, Math through the Ages: A Gentle History for Teachers and
Others (Oxton House Publishers, 2002). That book also contains a section describ-
ing “What to Read Next” and an extensive bibliography for anyone who wants to
do serious historical research about a topic or a person.

What do I really need to know first?

Not much—just a few small pieces of the Big Picture of the past several thousand
years. Most of the mathematics we now learn in school comes from a tradition that
began in the Ancient Near East, then developed and grew in Ancient Greece, India,
and the medieval Islamic empire. Later this tradition migrated to late-Medieval and
Renaissance Europe, and eventually became mathematics as it is now understood
throughout the world. Some other cultures (Chinese, for example) developed their
own independent mathematical traditions, but they have had relatively little influ-
ence on the substance of the mathematics that we now teach. That independence of
cultures is one thing to keep in mind as you think about the history of numeration
and arithmetic. Here are some other major historical reference points that your
students might know from their history classes.

Ancient Mesopotamia, the region between the Tigris and Eu-
phrates Rivers in what is now Iraq, is sometimes called the “cradle
of civilization.” If your students are studying ancient history, they will
probably recognize the name of Hammurabi, a prominent ruler of the
Babylonian Empire of the 17th century bce. This was several thou-
sand years after the beginnings of civilized society in that region, but

it provides a convenient reference point. By Hammurabi’s time, both writing and
numeration were well developed tools for communication and commerce.

Ancient Egypt also had a well developed civilization by that time.
It had developed around the Nile Valley in northern Africa. By about
3000 bce, the country began to be unified under a single ruler (a Pharaoh).
The pyramids date back to this millennium (3000–2000 bce). Our main
source of information about Egyptian mathematics comes from an artifact
of a later time, the Ahmes Papyrus (or Rhind Papyrus) of about 1650 bce.



First Thoughts for Teachers 5

The Ancient Greek civilization dates from about the 6th
century bce to the Roman conquest, often identified with the
Battle of Corinth in 146 bce. In the 5th century bce, Athens
was the center of an intellectual and artistic culture. It was the
era of dramatists Sophocles and Euripides, philosophers Socrates
and Plato, and other prominent artists and intellectuals. When

Alexander the Great’s conquests spread Greek culture to the Near East and north
Africa in the 4th century bce, Alexandria (in Egypt) became another center of
Greek learning. Most of the Greek mathematics we know about comes from the
period after Alexander the Great, and a lot of it seems to be connected to the city
of Alexandria. It is associated with names such as Euclid, who lived in Alexandria,
and Archimedes, who lived in Syracuse (in Sicily).

When the Roman Empire absorbed Greece, it preserved
Greek literature, art, and learning. As the Empire spread
throughout Europe, so did Graeco-Roman culture, along with
the language of Latin. The Roman Empire was the domi-
nant political and cultural influence in Europe until the fall

of Rome in 476 ce. The heavily geometric mathematics of the Greeks was gradu-
ally supplemented by a “subscientific” tradition of computational aids for building,
commerce, and other practical pursuits.

The fall of Rome brought with it the political and social fragmen-
tation of the Middle Ages. Between the 5th and 10th centuries ce,
European scientific scholarship was essentially dormant, partially pre-
served but not materially enhanced by the dominance of the Christian
Church and its monasteries. During that time, two other cultures that
would influence Western mathematics were developing independently.

One was in India, where Hindu scholars were making great
strides in astronomy, mathematics, and other intellectual pur-
suits. However, by the communication and travel standards of
that time, India was very far from Europe, so almost none of

this work found its way directly into the European tradition. That cultural link was
provided by the Arabs, in a land geographically between India and Europe.

The rise of Islam began with the Hejira in 622 ce. A hundred
years later, a loosely knit Islamic Empire stretched from India in
the East to Spain in the West. It encompassed all of the African coast
of the Mediterranean Sea, the entire Arabian Peninsula, and all of the

Middle East, north to the Black and Caspian Seas. The caliphs (rulers) of the 9th
century actively fostered the study of mathematics and science, drawing on both
Greek and Indian sources. The common scholarly language throughout the Islamic
Empire was Arabic.
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The clash of European and Arabic powers in the Crusades
opened the way to increased commerce between East and West.
As goods and money flowed, so did ideas. By the 12th century,
the scientific and mathematical advances of the Arabs were making
their way into the European tradition as the Arabic manuscripts

were gradually translated into Latin.

The exchange of ideas throughout Europe was aided by the use
of Latin as the common language of scholarship. However, it was
hampered by the fact that all copies of documents had to be done by
hand. That changed in 1440 with the invention of movable-type
printing by German inventor Johannes Gutenberg. The famous
Gutenberg Bible of 1454 was the first book printed by this method.

As printing spread, so did ideas. This invention was possibly the most influential
technological breakthrough of the 15th century.

The European Renaissance of the 14th – 16th centuries
awakened a renewed interest in science and mathematics, along
with many extraordinary achievements in art, literature, and phi-
losophy. Advances in shipbuilding and in craftsmanship of all
kinds led to a wider range of commercial activity and explo-

ration. This, in turn, called for more refined technological tools. It was the era
of Christopher Columbus, Vasco da Gama, Ferdinand Magellan, John Cabot, and
other seagoing adventurers. These activities required advances in such things as nav-
igation, trigonometry, astronomy, and clock-making. Merchants learned arithmetic
and developed double-entry bookkeeping.

The historical scope of this booklet and its activity sheets lies almost entirely
within the boundaries of the foregoing milestones.
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Writing Whole Numbers

Mathematical
Focus

Place Value

Historical
Connections

Ancient Egypt, c. 2000 bce

Ancient Mesopotamia, 2000–200 bce

Mayan Civilization, 1500 bce

The Roman Empire, 500 bce

India, 7th and 8th centuries ce

We write numbers using a decimal place system. The two italicized words
refer to two different properties. Decimal says that our numeration system

is based on ten; place tells us that the position of a symbol affects its value. Both
properties are needed for the usual algorithms of arithmetic, but either can exist
without the other.

This section explores historical numeration systems that did not have both of
these properties together. By working with them, students will better understand
the role of place value in our own system and how it relates to grouping by powers
of ten. There are activities for four systems:

Egyptian Hieroglyphic — This system has no place value at all. It is based on
ten, in the sense that each power-of-ten quantity has a different symbol, but
the position in a symbol string does not affect a symbol’s value.

Babylonian Cuneiform — This is a place value system based on 60, but it has
no “zero” placeholder symbol, which results in confusing ambiguity.

7



8 Place Value

Mayan — This is a place value system based mainly on 20, with one strange
exception, and it does have zero placeholder symbol. Its symbol strings are
written vertically.

Roman — The Roman system is based primarily on powers of ten, with a couple
of extra symbols for five times some of them. It does not have place value
in the usual sense, but a peculiar subtractive device depends on the relative
positions of some symbols.

There is also a summary activity sheet comparing these four systems to each other
and to our own Hindu-Arabic system. Besides learning about place value, students
will get some valuable practice with powers and multiples of numbers as they work
on these sheets. These unusual settings make the arithmetic useful and interesting,
rather than routine drill done for its own sake.

Note: When the activity sheets refer to “numbers,” they are written in our familiar
Hindu-Arabic numeration system. There is a conceptual distinction between the
numbers themselves and our way of writing them, but most students would find
such an explanation more pedantic than helpful. We suggest that you ignore it
unless a student raises the question.

Sheet 1-1: Egyptian Hieroglyphics

• Main Feature •
A base-ten system without place value

These activities illustrate grouping by tens without
place value. In particular, they highlight the following
features of the Egyptian hieroglyphic system, which
was in use shortly after 2000 bce, almost 4000 years
ago.

• Multiple copies of a particular power of ten are denoted by repeating the
symbol for that power.

• The order in which symbols are written does not affect their value. Descending
order is useful for keeping track of values, but rearrangement for decorative
purposes does not change the number represented.
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• Historically, numbers were added using some sort of computational device: a
counting board or an abacus. There was a separation between writing numbers
down and doing arithmetic. Nevertheless, it is conceptually useful to consider
how one would add numbers written in this system. Two numbers can be
added by simply putting the symbols for each together. Ten symbols for a
particular power of ten are then replaced by the symbol for the next power
of ten. This is the point of the parenthetical “Why not?” question at the
beginning of the sheet.

Students should notice the inconvenience of having to write so many symbols to
represent even relatively small numbers. Question 2(b) is a good example of this.
On the other hand, 1(b) and 2(c) show cases for which the Egyptians needed fewer
symbols than we do.

Solutions

1. (a) 24 (b) 2,003,000 (c) 201,312

2. In each case, any two arrangements of the given symbols will work. Let your
students simplify the lotus flower and astonished man symbols to make them
easier to draw.

(a) C C C C C ∩ ∩ ∩
(b) E E D D D D B C C C ∩ ∩ ∩ ∩ ∩ ∩
(c) A

3. (a), (c), and (d) all stand for 11,122; (b) is 21,211; (e) is 111,202

4. (a) D B C C C C Check: 7200 + 4204 = 11,404

(b) B ∩ Check: 563 + 454 = 1017

(c) This example illustrates “borrowing” in the Egyptian system. One ∩ has
to become ten copies of , then one C has to become ten copies of ∩, and
finally one B has to become ten copies of C .

C C C C C C C C C ∩ ∩ ∩ ∩ ∩ ∩ ∩ Check: 1213− 235 = 978

5. This can be done by converting to our numeration system and multiplying.
There are 34,050 soldiers, so there are 34,050 × 3 = 102,150 gold pieces. The
hieroglyphic numeral is EB B C ∩∩∩∩∩. Calculating this without converting
to our system is an instructive exercise in “carrying” in base-ten addition.
Combine three copies of the numeral for the soldiers and exchange each group
of ten like symbols for one symbol of the next higher power.
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Sheet 1-2: Babylonian Numerals

• Main Feature •
A place system not based on ten

The Babylonian numeration system is sometimes called cuneiform
(“kyoo-nee-uh-form” or “kyoo-nee-uh-form”), which means “wedge-
shaped.” It was used between 1900 and 1600 bce in Mesopotamia, a
region around the Tigris and Euphrates Rivers that is now part of Iraq.
It is based on two wedge-shaped symbols, which looked something like
F and G. These symbols were quickly and easily pressed into soft clay
tablets with a simple tool. Tablets that needed to be preserved were
baked to form a hard, permanent record. Many of these tablets have
survived.

(Note: We have simplified the shapes a bit to make them more clearly distinct from
each other. Also, we write the symbols for a numeral on a single line for added
clarity, rather than grouping or overlapping them, as the Babylonians did. The
hand tablet graphic with question 8 shows how these symbols actually appeared.)

This system uses place value, but it is based on sixty, rather than on ten. That
is, successive groups of symbols are multiplied by increasing powers of 60. The
numbers 1 to 59 are made by adding combinations of the two basic symbols, with F
standing for one and G for ten. By working with powers of 60, instead of powers of
10, students will see more clearly the essential features of any place value system.

Students may think it strange that the Babylonians thought about numbers in
60s much like we think in 10s, but we do it ourselves in very ordinary situations.
For instance:

• We think in 60s when we tell time: 60 minutes in an hour, 60 seconds in a
minute. That’s 3600 seconds in an hour.

• We measure angles with a system based on 60: 360 (= 6 × 60) degrees in a
circle, 60 minutes in a degree of arc, 60 seconds in a minute of arc.

• Here’s an example of measuring with 60s that is less well known. For ships
and planes, distance is measured in nautical miles and speed is measured in
knots. A nautical mile is the length of 1

60

th of a degree of the Equator. Thus,
the full 360◦ length of the Equator is 60 × 360 = 21, 600 nautical miles. A
knot is one nautical mile per hour (60 minutes).
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Why do we do it this way? Because of the Babylonians. These measurement customs
have been handed down to us from the Babylonians of 4000 years ago!

This activity sheet introduces students to the Babylonian system in stages, start-
ing with the numbers from 1 to 59 and progressing gradually to the powers-of-60
place values.

Solutions

1. (a) 12 (b) 30 (c) 26

2. (a) GFFFFFFF (b) GGGG (c) GGGGGFFF

3. (a) 201 (b) 674 (c) 1891

4. (a) FF FFFFF (b) GFFF GFF (c) GGGGGFF GGGFFFF

5. This gets students to focus on the fact that 602 = 3600 and to notice that
603 = 216,000 is quite a large number for the fourth-place value.

6. 7883 = 2 × 3600 + 11× 60 + 23

7. Even with calculator assistance, working out these answers gives students some
good arithmetic practice as they choose the appropriate multiples of the powers
of 60.
(a) GFFF GGGGGFFF GG (b) GG GFF FFF

8. The separate numerals represent 2 and 13. If they are 60s and 1s, respectively,
then the number is 132, which makes sense for a flock of sheep, but not for
a king’s army. One possiblility is that the 1s place was skipped; if so, this
represents 2 · 602 + 13 · 60 = 7980. That’s a large group of soldiers, but
probably not a whole army. If both the 1s and 60s were skipped, then this
represents 2·603+13·602 = 478,800, a truly formidable force and one that may
be too large for historical accuracy. Other possibilities are 2 · 602 +13 = 7213,
2 · 603 + 13 · 60 = 432,780, and 2 · 603 + 13 = 432,013, though this last number
is less likely simply because the 13 probably would have been rounded off in
tallying such a large number of soldiers.
(Historical Note: This is the numeration system that was used during the
First Babylonian Empire, which included the reign of King Hammurabi.)

9. This question highlights the importance of a zero placeholder. It is not easy.
The figure is from a drawing of Ur Excavation Tablet 236 by Eleanor Rob-
son. See Figure A.5.10 of Mesopotamian Mathematics, 2100–1600 BC: Tech-
nical Constants in Bureaucracy and Education by Eleanor Robson. Clarendon
Press, Oxford,1999. Used by permission. The numerals of this question ap-
pear in the upper left quadrant of the tablet, which looks like the work of
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somebody who was doing arithmetic exercises.
(Note: The symbols in the drawing are difficult to see clearly, partly because
they are shaped less distinctly than the printed ones we use and partly because
they overlap in groups on the tablet. For instance, the five G marks on the
upper left overlap so much that they look almost like a single symbol.)

Using the fact that the operation here is multiplication, the first part
represents 50×30, assuming that these are numerals in the rightmost position
(that is, counting 1s, not higher powers of 60). Now, 15 × 30 = 1500 and
1500 = 25×60, so the first answer, GGFFFFF, is in the 60s place; the 1s place has
been skipped. Multiplying this answer by FFF yields 1500× 3 = 4500, which is
1× 3600 + 15 × 60, or F GFFFFF, where again the 1s place has been skipped.

Sheet 1-3: Mayan Numerals

• Main Feature •
A non-decimal system

with a placeholder

Halfway around the world, in a place that the Egyptians and Baby-
lonians didn’t know existed, lived a people called the Maya (“mī yuh”).
The Maya lived in Central America, on and near the Yucatan Peninsula,
now part of southern Mexico and the countries of Belize, Guatemala,
and Honduras. During the centuries between 1500 bce and 300 ce,
the Mayan people had a very advanced civilization. As their popula-
tion grew, they settled in larger and larger towns. They developed a
written language, built large, colorfully decorated buildings, and created a detailed
calendar for keeping track of the seasons, the phases of the moon, and similar things.
These advances in language and science formed the basis for the rich Classic Period
of Mayan culture, from about 300 to 900 ce.

The Maya had a numeration system similar to that of the Babylonians, but
free from the spacing difficulty. There were two basic symbols, a dot, · , for the
number one, and a bar, , for the number five. These two symbols were used in
combination to represent the numbers 1 through 19. These nineteen symbol groups
were used to represent larger numbers by means of a place value system. The groups
were arranged vertically, rather than horizontally, and were evaluated by adding the
place value amounts for each group. The lowest group represented single units; the
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value of the second group was multiplied by 20, the value of the third by 18 · 20, the
value of the fourth by 18 · 202, the value of the fifth by 18 · 203, and so on. Thus,
the Mayan system was essentially based on twenty, except for the peculiar use of
18. The spacing difficulty of the Babylonian system was avoided by using a special
“zero” symbol, H , to show when a position was skipped. Questions 7–10 focus
students on how place value works and how it depends on the base of the system.

Solutions

1. This is an exercise in pattern recognition. These numerals for 1 through 19
are needed for the rest of this activity sheet.

· · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · ·

2. This example focuses attention on the details of the preceding paragraph.
2× (18× 20) + 11 × 20 + 8 = 948

3. (a) 12× 20 + 11 = 251
(b) 5 × (18× 20) + 8 × 20 + 4 = 1964
(c) 10 × (18 × 202) + 3 × (18× 20) + 7 × 20 + 2 = 73,222

4. (a)
·
· · · (b)

·
· · (c)

· ·
·
· ·

5. The point here is that, because the Mayan system is not based on powers of
ten, the “zero” placeholders in that system do not match exactly with the
zeros in our numerals.
(a) 7 × 20 = 140 (b) 7 × (10 × 20) = 2520 (c) 7 × (18× 202) = 50,400

6. (a)
·
H (b) H (c)

· ·
H (d)

·
H
· ·

7. To multiply by 20, a Mayan would simply shift the digit over one place by
appending a “zero” placeholder. Multiplying by 10 is not as easy; students
might have to experiment a bit. The next question asks them to describe any
patterns they see.

Numeral: · · · · · · · · · · · · · ·

×10
· ·
H

· · ·
H H

· ·
H

· · · ·

×20
· · · ·
H

·
H H

·
H

· · · ·
H

· · · ·

H
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8. (a) Multiplication by 20 is easy: Put a “zero” placeholder under the numeral.
Multiplying by 10 leads to two patterns, one easier than the other: If the
given number is even, halve it and put a “zero” under it. If the number
is odd, halve the even number before it and put two bars under it. (That
is, multiply half the number before it by 20 and add 10.)

(b) No; they do not work for two-place numerals. Putting a “zero” under a
two-place numeral multiplies the lower place by 20, but the upper place
by only 18. The simplest example is the dot-over-zero symbol for 20.
Putting another “zero” under that makes it equal to 360, not 400. The
same difficulty breaks the patterns for multiplying by 10.

9. Putting one more “zero” under this numeral multiplies its value by 20; putting
two more “zeros” under it multiplies its value by 400. The original number is
8 × (18 × 20) = 2880. 2880 × 20 = 57,600 = 8 × (18 × 202). 2880 × 400 =
1,152,000 = 8× (18× 203).

10. 19 × 20 = 1 × (18 × 20) + 20 = 380. The first of these would be correct in
a pure base-20 system; the second uses the Mayan value of 360 for the third
place in the numeral. There is some historical evidence to suggest that the
Maya used both systems at one time or another.

Sheet 1-4: Roman Numerals

• Main Feature •
An additive system

(almost) without place value

Symbol Value

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

The dominance of civilized Europe by the Roman Em-
pire from about the first century bce to the fifth century ce

made Roman numeration the common European way of writ-
ing numbers for many centuries afterwards, even into the Re-
naissance. It is still used for decorative purposes. Like the
Egyptian system, Roman numeration is additive and not po-
sitional (with one minor exception). Its basic numeral sym-
bols are seven alphabet letters. These basic symbols and their
corresponding values are listed in the table at right and on
the activity sheet.
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Most of the time, the letters were given in order of descending value. To get
the value of the entire numeral, the values of the basic symbols were added. For
instance,

CLXXII = 100 + 50 + 10 + 10 + 1 + 1 = 172.

Larger numbers were written by putting a bar over a set of symbols to indicate
multiplication by 1000. Thus, V = 5000 and

VIICLXV = 7000 + 100 + 50 + 10 + 5 = 7165.

Solutions

1. (a) 28 (b) 861 (c) 2137 (d) 6313 (e) 1,200,580

2. (a) XXXVII (b) CCLVI (c) MMXI (d) XXCCCLXIII (e) MMI

A peculiar feature of the Roman system is its subtractive device, which was a
fairly late invention. If a basic symbol in a numeral had a smaller value than the
one immediately to its right, then the smaller value was subtracted from the larger
one to get the value of the pair. For instance,

IV = 5− 1 = 4.

To avoid ambiguity, only symbols representing powers of ten could be subtracted,
and they could be paired only with the next two larger values. For instance,

MCMXCIV = 1000 + 900 + 90 + 4 = 1994.

By this method, no more than three adjacent copies of the same basic symbol were
needed in any numeral.

3. (a) 144 (b) 1999 (c) 3474

4. (a) CCCXXIV (b) CDLXXXIX (c) MMCCCXCVICMXLIV

5. (a) 1904 (b) MDCCCLIX You might ask students to look for a building
in their town with a cornerstone marked in Roman numerals and bring in
information about anything they find.

6. The information for this question is from the website chart.copyrightdata.com.

(a) 1963 (b) 1935

(c) The numeral reads 1944; the X should not be there.

(d) The D is an error. Taken literally, MCMDXXVI is 1900 + 500 + 26 =
2426, which is an impossible date for this movie. Moreover, the Romans
would never have written the number that way. Clever students might
guess (correctly) that the D should have been an L, which makes sense.
The movie was made in 1976.
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The next three questions are more difficult than the
others on this activity sheet. There are no obvious al-
gorithms for doing these computations. Students will
probably find different ways to organize their thinking
and their work; allow for (and expect) some creative
thought! These solutions are typical possibilities.

7. To add DCCCXLVIII and CDXXXIV, just put the symbols together, keeping
the subtractive pairs together: (DCCCCD)(XLXXX)(VIIIIV). Now account
for the subtractions by “cancelling” a subtracted quantity with a like added
quantity, and rearrange the symbols in descending size order:

(DDCC)(LXX)(VVII)

Finally, convert any repeated symbols to the next larger size, as appropriate:

MCCLXXXII

Check: 848 + 434 = 1282.

8. To subtract DCCCXLVII from MCCLXVI, break the problem into pieces that
will allow for “borrowing,” starting with units, then tens, and so on: (XVI
minus VII)(L minus XL)(MCC minus DCCC), which is (IX)(X)(M minus DC,
which is CD). Put the pieces together in descending order: CDXIX

Check: 1266− 847 = 419.

9. This example avoids the complication of subtractive pairs in the multiplier;
even so, it is not easy. To multiply CCLXXXIV by XVI, first use each
multiplier digit separately: X times CCLXXXIV is MMDCCCXL; V times
CCLXXXIV is DDCCLLLLXX; I times CCLXXXIV is CCLXXXIV. Now
juxtapose the results and simplify, watching out for subtractive pairs:

(MMDCCCXL)(DDCCLLLLXX)(CCLXXXIV)

MMDDDCCCCCCCLLLLLLXXXXIV

IVDXLIV

Check: 284× 16 = 4544.
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Sheet 1-5: Hindu-Arabic Numerals

• Main Feature •
Comparing our system with the others

Our method for writing numbers is relatively new compared to the other systems
described in this section. It was invented by the Hindus sometime before 600 ce

and picked up by the Arabs during the Islamic expansion into India in the 7th and
8th centuries. That is why it is called the Hindu-Arabic system. The Europeans, in
turn, learned it from the Arabs a few centuries later.

The Hindu-Arabic system uses place value and is based on powers of ten. Its
basic symbols — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 — are called digits and represent
the numbers zero through nine. Nobody really knows why the number ten was
originally chosen as the base for this system. The standard conjecture is that it was
more biological than logical. Research indicates that this numeration system, like
many others, emerged from finger counting, so it was natural that the base number
should correspond to the number of fingers we human beings have. The very word
we use for the basic numerals reflects this fact; digitus is the Latin word for finger .

Despite its simplicity and efficiency, the Hindu-Arabic method of writing num-
bers did not displace the use of the Roman numeration system in Europe for several
centuries. Old habits die hard. There were also practical reasons. For example, peo-
ple worried about how easily a “2” can be changed into a “20” in the Hindu-Arabic
system. Because of this, laws were passed saying that in legal documents numbers
had to be written out in words. We still do this when we write checks.

One of the changes brought on by the Hindu-Arabic system is the fact that it
is possible to compute directly with the numbers as written. The availability of
cheap paper helped the new numbers to catch on. The advent of calculators has
in some ways brought us back to having two systems: one for writing numbers and
one (electronic) for actually doing computations.

Solutions

1. See Display 1.1. Two of the Babylonian entries illustrate the problem caused
by the absence of a “zero” placeholder.
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Egyptian Babylonian Mayan Roman Hindu-Arabic

∩∩ ∩ ∩ ∩ ∩ ∩ F GFF
· · ·
· · LXXII 72

∩ ∩ C ∩ ∩ FF GGFFFF
· ·
· · · · CXLIV 144

C C C FFFFF
H

CCC 300

C C C C C C ∩ ∩ G GG
·
· · ·
H

DCXX 620

B C C C ∩ ∩ GGFF
· · ·
· ·
H

MCCCXX 1320

Display 1.1

2. This is an opinion question with a variety of legitimate answers. Look for
some sense of reasonableness in student explanations.

3. This question links students’ math work with their study of world history.
In some of these cases, the dates span centuries and cannot be pinned down
very precisely. However, these ten items have been chosen so that there is no
ambiguous overlap of time periods. The proper order is:

(b) by 3000 bce

(d) sometime in 2000 – 1000 bce

(a) 509 bce

(g) 331–323 bce

(c) 476 ce

(j) 7th and 8th centuries
(h) early 9th century
(f) 13th century
(i) 1452
(e) 1492
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Zero Is Not Nothing

Mathematical
Focus

Properties of Zero

Historical
Connections

Ancient Mesopotamia, 2000–200 bce

India, 7th–11th centuries ce

The Arab World, 9th century ce

Europe, 12th–17th centuries ce

Most people think of zero as “nothing.” The fact that it is not
nothing lies at the root of at least two important advances in

mathematics. These activities trace the development of zero from a
place holder to a number and then from a number to an important
algebraic tool. Along the way, students will see how to resolve po-
tential confusions about the behavior of zero in arithmetic, such as
the difference between division by zero and division into zero.

The story begins in Mesopotamia, the “Cradle of Civilization,” sometime before
1600 bce. By then, the Babylonians had a place value system for writing numbers
based on grouping by sixty, much as we count 60 seconds in a minute and 60 minutes
(3600 seconds) in an hour. They had two basic wedge-shaped symbols — F for one
and G for ten — which were repeated in combination to stand for any counting
number from 1 to 59. For instance, they wrote 72 as F GFF, with a small space
separating the 60s place from the 1s place.

But there was a problem. The number 3612 was written F GFF (one 3600 = 602

and twelve 1s) with a little extra space to show that the 60s place was empty. Since
these marks were made quickly by pressing a wedge-shaped tool into soft clay tablets,
the spacing wasn’t always consistent. Knowing the actual value often depended on
understanding the context of what was being described. Sometime between 700 and
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300 bce, the Babylonians started using their end-of-sentence symbol (we’ll use a
dot) to show that a place was being skipped, so 72 and 3612 became, respectively,

F GFF and F · GFF

When the Hindus developed the base-ten place value system (sometime before
600 ce), they used a small circle as the placeholder symbol. The Arabs learned this
system in the 9th century, and their influence gradually spread it into Europe. This
was done largely through the writings of the 9th-century Arab scholar Muh. ammad
Ibn Mūsa Al-Khwārizmı̄, whose book on arithmetic was translated into Latin in the
12th century and circulated throughout Europe.

In Al-Khwārizmı̄, zero is not thought of as a number; it is just a placeholder.
In fact, he describes the Hindu-Arabic numeration system as using “nine symbols,”
meaning 1 through 9. He explained the role of zero like this:

But when [ten] was put in the place of one and was made
in the second place, and its form was the form of one, they
needed a form for the tens because of the fact that it was
similar to the form of one, so that they might know by means
of it that it was [ten]. So they put one space in front of it and
put in it a little circle like the letter o, so that by means of
this they might know that the place of the units was empty
and that no number was in it except the little circle. . .

(Translated from the Latin in “Thus spake Al-Khwārizmı̄” by John N. Crossley and Alan S. Henry,

in Historia Mathematica, 17:103–131, 1990. The actual text has the Roman numeral “X” for “ten.”)

The Indian word for this absence of quantity, sunya, became the Arabic sifr ,
then the Latin zephirum and cifra, and these words evolved into zero and cipher .

Sheet 2-1: Using a Placeholder

• Main Feature •
The importance of 0 as a symbol

These activities review the idea of place value and illustrate the importance of
a place holder. They also highlight the distinction between a placeholder and a
number, a significant issue in the history of the number system. The description of
the Babylonian system here echoes and extends Activity 1-2 of Part 1.
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Solutions

1. (a) 5 tens (b) 5 ones (c) 5 thousands

2. (a) 14 (b) 43 (c) 51

3. Students might notice that there are more than three correct answers to this,
depending on whether two or more consecutive spaces are skipped. For in-
stance, these numerals might be in the 603 and 602 places, or in the 605 and
603 places, etc. If they observe that, congratulate them on their understand-
ing of the difficulty. The answers given here follow the pattern of the example
just before this question.

(a) 12 ·60+21 = 741 (b) 12 ·602+21 = 43,221 (c) 12 ·602+21 ·60 = 44,460

4. These questions are like puzzle-book problems that many children (and adults,
too) find fascinating. They are not easy. Students will probably need to use
scrap paper for this part and the next. Besides emphasizing the role of a place
holder, these questions provide arithmetic practice in a novel setting.

(a) 203 + 107 = 310

(c) 203 + 17 = 220

(e) 550 + 55 = 605

(b) 230 − 107 = 123

(d) 550 + 505 = 1055

(f) 550−505 = 45 and 505−55 = 450

5. These three questions, taken together, are actually easier than they first ap-
pear. Trying the various possible positions for 0 in the first numeral will lead
to one or another of these results right away.

(a) 2075× 4 = 8300 (b) 2705× 4 = 10,820 (c) 20,705 × 4 = 82,820

6. This question highlights the difference between place holder and number. The
place holder 0 does not mean “multiply by zero”; it means “skip this place.”

(a) 7 tens (b) 4 hundreds

(c) 5 hundreds and 6 ones (d) 2 thousands and 1 ten

Sheet 2-2: The Number Zero

• Main Feature •
Using 0 as a number

This activity sheet shows how the number zero behaves with respect to addition,
subtraction, multiplication, and division. It pays special attention to distinguishing
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between division into zero and division by zero, a frequent point of confusion for
students. It also looks at what it means to raise something to the 0 power.

As long as 0 was just a place holder, there was no need to worry about how it
behaved in arithmetic. After all, it wasn’t a “something” in any mathematical sense.
It was just a punctuation mark — like a comma or a dash — to say which place to
skip. But by the 9th century ce, the Hindus had made a conceptual leap that ranks
as one of the most important mathematical events of all time: They recognized this
absence of quantity as a quantity in its own right. That is,

they began to treat zero as a number.

For instance, sometime around 850, the Indian mathematician
Māhav̄ira wrote that a number multiplied by zero results in zero,
and that zero subtracted from a number leaves the number un-
changed. He also claimed that a number divided by zero remains
unchanged. More than two centuries later, however, Bhāskara de-
clared a number divided by zero to be an infinite quantity.

The main point here is not whether these Indian mathematicians got the right
answers, but the fact that they asked such questions at all. To compute with zero,
you first have to recognize it as something, an abstraction like one, two, three, etc.
You must move from counting one goat or two cows or three sheep to thinking of
one, two, three on their own, as things that can be manipulated without regard to
what is being counted. Then you must take an extra step, to think of 1, 2, 3,. . . as
ideas that exist even if they aren’t counting anything at all. (Grammarians might
say that it converts them from adjectives to nouns.) Then, and only then, does it
make sense to treat zero as a number.

As the Al-Khowār̄izmi quote above indicates, the Arabs did not recognize zero as
a number. Neither had the Greeks, despite their impressive mathematical achieve-
ments many centuries before. European mathematics was heavily influenced by the
Greeks and by the Arabs, so the idea that zero is a number took a long time to get
established in Europe. Motivation for doing so came from the gradual acceptance of
the Hindu-Arabic numeration system. As people started to compute in this system,
it became necessary to explain how to add and multiply when one of the digits was
0. Nevertheless, even some of the most prominent mathematicians of the 16th and
17th centuries would not accept zero as a legitimate solution for an equation.

The mathematical issue is about making the most useful choices. We can choose
to define the behavior of 0 in any way we please. The trick is to do it so that the
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essential “nice” properties of arithmetic are not damaged. When we do arithmetic
with numbers that include the symbol 0, we need to know how to add, subtract,
and multiply with that symbol.

People wanted arithmetic to work, so they quickly figured out how to add, sub-
tract, and multiply with 0. Dividing by 0 was never needed. We could define it if
we wanted to, but not without problems. For instance, we could choose to define
5 ÷ 0 as 0 or 1 or 236, but that would conflict with the basic relationship between
multiplication and division for nonzero numbers. We would have to keep accounting
for this awkward exception. Several of these questions examine this issue.

Solutions

1. If you use this question and the next for some group discussion, that will help
to sharpen students’ thinking and their ability to express mathematical ideas
clearly. The simple questions of (b), (c), and (d) here set up a pattern of
questions that will be asked for other arithmetic operations. Parts (b) and
(c) together address commutativity: Does the operation work the same way
in both orders? Part (d) asks about combining 0 with itself, a question that
becomes problematic for division and exponentiation.

(a) In common-sense terms of counting, if you have a particular number of
things and add no more to them, then you should have the same number
of things you started with.

(b) 5 + 0 = 5 (c) 0 + 107 = 107 (d) 0 + 0 = 0

2. (a) This invites another common-sense response. If you have some cats and
take away none of them, you are left with the same number of cats.

(b) 3− 0 = 3 (c) 1907− 0 = 1907 (d) 0 − 0 = 0

(e) You may have to help students here because the answer is largely his-
torical. In Māhav̄ira’s time, negative numbers were not even considered.
Numbers were thought of in terms of counting or measuring things. The
idea that you could “take away” some quantity from no quantity would
have been regarded as nonsense.

3. (a) Any number n multiplied by 0 should be the same as n copies of 0 added
together. For instance, 5 × 0 = 0 + 0 + 0 + 0 + 0. Since 0 + 0 = 0, the
entire sum should be 0. Students might also consider 0×n as 0 copies of
n “added together,” which would also result in 0.
A different point of view is to say that we want multiplication by 10
to do the right thing. For that to happen with the usual method for
multiplying numbers, we need to say n × 0 = 0.

(b) 7× 0 = 0 (c) 0× 25 = 0 (d) 0 × 0 = 0
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4. This illustrates why division by 0 is undefined. There is no way to define it
and preserve the fundamental property that (a÷ b)× b = a for any number a.

(a) Students might see this more easily if they write the example in fraction
form: 5× (3÷5) = 5× 3

5 = 3. In general, it should be true that b× a
b = a

for any numbers a and b. So 0 × (3 ÷ 0) should be 3, but, according to
Māhav̄ira, 0 × (3÷ 0) = 0 × 3 = 0.

(b) If you divide a number by smaller and smaller numbers, the quotient gets
bigger and bigger. So, as the divisor approaches 0, the quotient increases
without limit; that is, it “approaches infinity.”

(c) If 7 ÷ 0 = B, then (7 ÷ 0) × 0 = B × 0. But (7 ÷ 0) × 0 should equal
7 (because multiplying by 0 should undo dividing by 0), whereas B × 0
must equal 0 (because any number times 0 equals 0, as in part 3).

(Note: Some students might suggest that a number divided by 0 ought to
equal 0. The same kind of thing goes wrong in that case, too: 7 ÷ 0 = 0
implies (7÷ 0)× 0 = 0 × 0, so again 7 = 0.)

5. The parenthetical question should trigger a common-sense understanding here:
Half of nothing is still nothing, etc. (a) 0 (b) 0 (c) 0

At this point, some students might ask about 0 ÷ 0. This question is a little
subtler than that of dividing a nonzero number by 0. Division is defined like this:

a ÷ b = q if and only if b × q = a.

If b = 0 and a 6= 0, then no number makes sense for q because b × q = 0 × q = 0.
However, if both a and b are 0, then any number q will satisfy this definition! For
instance, 0 × 7 = 0, so we could say 0 ÷ 0 = 7. But if we do that, lots of basic
arithmetic properties go wrong. For instance:

14 = 7× 2 =
0
0
× 2 =

0 × 2
0

=
0
0

= 7

Any nonzero choice for q will lead to a similar contradiction. Well, what about
defining 0 ÷ 0 = 0? In that case, we run into difficulties like this:

3 = 3 + 0 =
3
1

+
0
0

=
3 · 0 + 1 · 0

1 · 0
=

0
0

= 0

Your sense of what your students know and need to know should determine whether
or not you decide to deal with this issue here.

6. (a) It means that the number of 7s multiplied together is 5.

(b) 7× 7 × 7 × 7 × 7 and 7 × 7 × 7

(c) N = 8 because the total number of 7s in the product is 5 + 3.
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(d) This is a difficult question for students who have not seen the idea already.
The next question revisits this idea a bit more gently. 75 × 70 should be
75 because no more 7s are appended to the first product. Therefore, 70

must be 1, because it does not change 75 by multiplication.

7. This question repeats the idea of question 6, with a little more help.

(a) 75 × 70 = 75 (b) 70 = 1 (c) 20 = 1 (d) 5860 = 1

The implication is that any nonzero number to the 0 power must equal 1.

8. This reinforces the idea in Question 7. False. Counter-example: 20 = 30

because both equal 1, but 2 6= 3.

Sheet 2-3: Zero in Equations

• Main Feature •
Using 0 as a tool in algebra

This activity sheet presumes that your students know some algebra and coordi-
nate geometry. The terms polynomial and quadratic equation are used, but all we
need is for students to know what those words mean. We assume that your students
know what it means to “solve an equation” and to graph an expression in x and y.

All of the questions are based, directly or indirectly, on a fundamental property
of our number system:

If the product of two numbers equals zero,
then at least one of them must be zero.

That is,
if ab = 0, then either a = 0 or b = 0 (or both).

Mathematicians refer to this property by saying that our number system does not
contain “zero divisors”; i.e., there are no pairs of nonzero numbers whose product
is 0.

By the end of the 16th century, zero was widely accepted as a legitimate num-
ber. This was also a time in which the symbols for writing algebra were gradually
becoming more standardized. Early in the next century, two mathematicians used
zero in a way that transformed the theory of equations.
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The first of these was Thomas Harriot (1560–1621), a man of
many different talents, interests, and accomplishments. Among
other things, in 1585 he was sent by Sir Walter Raleigh to help
establish the ill-fated Virginia colony on Roanoke Island, now
part of North Carolina. He was their surveyor, and he chronicled
the settlers’ activities and the natural resources of the area.1

Harriot proposed a simple but powerful technique for solving algebraic equations:

Move all the terms of the equation to one side of the equal sign,
so that the equation takes the form [some polynomial] = 0.

This is such a common part of elementary algebra today that we take it for
granted, but it was a revolutionary step forward at the time. Here is a simple
example of how it works.

To solve x2 + 2 = 3x, rewrite it as x2 − 3x + 2 = 0. The left side
can be factored into (x−1)(x−2). Now, since this product equals 0,
at least one of the factors must be 0. This allows us to find the two
roots by solving the much simpler equations x−1 = 0 and x−2 = 0.

.........................................................................................................................................................................................................................................................................................
....................
...............
............
...........
..........
.........
.........
........
........
........
.......
.......
......
......
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......
......
......
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.....
.

solutions

x

y

↙↘

Harriot’s Principle, as this is sometimes called, was
popularized by Descartes in his writings on analytic ge-
ometry during the first half of the 17th century. When
linked with Descartes’ coordinate geometry, this principle
becomes even more powerful. To see why, think about
solving

[some polynomial in x] = 0.
If you graph

[some polynomial in x] = y

on an xy-coordinate plane, then the solutions (if any) will be where the graph crosses
the x-axis. Even if the equation can’t be solved exactly, a careful picture will give
you a good approximation of its solutions.

The first three questions on this activity sheet are related. Taken together, they
highlight a fundamental arithmetic property, cancellation. The fact that there are
no zero divisors allows us to cancel a common nonzero factor from both sides of an
equation. The formal description goes like this:2

1Harriot’s life would make an excellent topic for student projects, particularly in conjunction
with other subjects they are studying. It could be used to connect math with geography, history,
and natural science.

2These arguments may be too formal for your students. They are here mainly for your informa-
tion, to be used in whatever way you see fit.
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If a, b, and c are numbers such that ab = ac and a 6= 0, then b = c.

Justification: ab = ac implies ab− ac = 0. But ab− ac = a(b− c), so
a(b − c) = 0. Now, because there are no zero divisors, a 6= 0 implies
b − c = 0, so b = c.

By the way, it is quite proper to refer to this as cancellation, rather than as
“dividing by a” or “multiplying by 1

a .” It is true even in the system of integers,
where 1

a does not exist if a 6= ±1. Some people think of cancellation as a more
obvious numerical fact and derive the no-zero-divisor property from that, as follows:

Suppose a and b are numbers such that ab = 0 and a 6= 0.
Then ab = a · 0, so, by cancellation, b = 0.
That is, any product that equals 0 has at least one zero factor.

Solutions

1. This question makes students notice the fact that there are no zero divisors.
The “explain why” part does not require a specific answer. Depending on the
grade and ability level of your students, you might expect an informal response
based on repeated addition: Nonzero numbers added together a nonzero num-
ber of times can never be zero, or something of that sort. More sophisticated
students might justify it by cancellation or by “dividing out” one nonzero
number to show that the other must be zero. Responses like these are good
because they display an understanding of the basic idea.

2. This question presents examples of the cancellation law. Students should come
away with an intuitive understanding that nonzero numbers can be cancelled,
but 0 cannot.
(a) a = b (b) a = b (c) nothing

3. This question presumes that students have some experience with equations
and with being asked to justify or explain what they do.

3a = 3b implies 3a − 3b = 0, so 3(a − b) = 0. By #1, 3 6= 0 implies a − b = 0,
so a = b.

4. North Carolina

5. Besides reinforcing Harriot’s Principle, these questions give students some
practice in manipulating algebraic expressions and signed numbers.

(a) x2 − 4x + 3 = 0

(b) 2x3 − 4x2 − 8x + 12 = 0

(c) −4x2 + 8x − 4 = 0
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6. The leading coefficient of each of these polynomials is easily factored out, so
the polynomial can be written as that coefficient times a simpler polynomial.
Since the coefficient is nonzero, the simpler polynomial must equal 0, so solving
the simpler equation is equivalent to solving the original one.

(5b) x3 − 2x2 − 4x + 6 = 0 (5c) x2 − 2x + 1 = 0

Questions 7 and 8 do not presume that the students know how to factor quadrat-
ics or other polynomials. Therefore, the factored forms are given, so the answers
come almost immediately from the fact that there are no zero divisors. If your stu-
dents have had some experience with factoring polynomials, you could easily add
more interesting questions by giving them equations that require factoring. Here
are a few possibilities, along with their rearrangements and factored forms.

x2 − 6 = 2x + 9 ⇔ x2 + 2x − 15 = 0 ⇔ (x + 5)(x− 3) = 0

x2 − 5x = 4(x− 1)− x2 ⇔ 2x2 − 9x + 4 = 0 ⇔ (2x− 1)(x− 4) = 0

x3 − 4 = 4x − x2 ⇔ x3 + x2 − 4x − 4 = 0 ⇔ (x + 1)(x + 2)(x − 2) = 0

7. The factored form is in the paragraph just before the question. This is the
same as solving (x − 3)(x − 1) = 0. Since there are no zero divisors, this is
true if and only if x− 3 = 0 or x− 1 = 0. Therefore the solutions are 3 and 1.

8. The idea here is the same as in #7; set each linear factor equal to 0 and solve.

(a) x = 5
2 or − 3 (b) x = −7 or 2

3

9. This question illustrates how Harriot’s Principle and Descartes’ geometry com-
bine to make a powerful tool for approximating solutions to equations of all
sorts. It also gives students practice with estimating and refining their first
approximations, a valuable skill in all applications of mathematics. There is
no single “best” answer. Here is a sequence of reasonable approximations,
assuming that the tick marks on the x-axis are 1 unit apart. (Note: If you let
students use calculators to do the routine computations, they will be better
able to focus on the main idea.)

x = 2.5; difference: 0.25 (2.52 + 11 = 17.25; 7 · 2.5 = 17.5)
x = 4.5; difference: 0.25 (4.52 + 11 = 31.25; 7 · 4.5 = 31.5)

x = 2.4; difference: 16.8− 16.76 = 0.04
x = 4.6; difference: 32.2− 32.16 = 0.04

x = 2.38; difference: 16.6644− 16.66 = 0.0044
x = 4.62; difference: 32.3444− 32.34 = 0.0044

10. This question links back to an earlier point in this section — division by 0 leads
to big trouble! The difficulty here is in the fourth step, “Divide by (a − b).”
Since a = b, this is division by 0, which is not allowed.
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Broken Numbers

Mathematical
Focus

Fraction Arithmetic

Historical
Connections

Ancient Egypt, c. 2000 bce

Mesopotamia, 2000–200 bce

China, c. 100 bce

India, 7th–9th centuries ce

Europe, 12th–18th centuries ce

Fractions have been part of mathematics for 4000 years or so, but the way we
write and think about them developed much more recently. Some of our most

common “rules of thumb” for fraction arithmetic depend more on the way we write
fractions than on their values. For instance, “invert and multiply” makes no sense
unless fractions are written as stacked pairs of numbers. This unit explores the
history of fraction notation and its effect on how we compute. Along the way, it
reinforces the common rules for working with fractions.

In earlier times, when people needed to account for portions of things, the things
were broken down (sometimes literally) into smaller pieces and then the pieces were
counted. The word fraction, which has the same root as fracture and fragment,
reflects this idea. This evolved into primitive systems of weights and measures that
made the basic measurement units smaller as more precision was needed. Some
measurement systems still in use today are based on
counting smaller units, rather than dealing with frac-
tional parts. For instance, in the following list of liquid
measures, each unit is half the size of its predecessor:

gallon, half-gallon, quart, pint, cup, gill.

The history of common fractions can be traced back to the Egyptian system

29
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of “parts” — what we today would call unit fractions — sometime in the second
millennium bce. At about the same time, Mesopotamian mathematics had a place
value system that foreshadowed our system of decimal fractions. In neither case
were fractions written as they are today. By 100 bce, the Chinese were writing
and working with fractions much as we do, but that was unknown to the Western
world at the time. Hindu manuscripts as early as the 7th century ce show a similar
approach, perhaps learned from the Chinese. These methods gradually became more
widespread in Europe during the 12th to 16th centuries ce. Percent was used in
European monetary transactions as early as the 15th century, but decimal fractions
did not become commonplace for another 150 years. These activity sheets focus
on those development stages separately, taking from each one something that helps
students to see how fraction arithmetic works today.

Sheet 3-1: Unit Fractions

• Main Feature •
Using fractions with numerator 1

In the 17th century bce, the basic operations of
Egyptian arithmetic were addition, subtraction, and dou-
bling. Multiplication were done by a system of propor-
tions, using these three operations.3 Their sense of frac-
tions was very different from ours. They worked only
with the idea of “the nth part,” the unit fraction 1

n for
any positive whole number n. To them, it made sense to consider “the fifth” (mean-
ing 1

5) or “the tenth” (meaning 1
10), but not three fifths or seven tenths, etc. That

is, there was only one basic “part” of each size. What we think of as other fractions,
they would describe as sums of these basic parts, never using more than one of each
size. For example, three fifths was thought of as “the half and the tenth.”

This activity sheet asks students to work with such a system. At first we use a
few of the Egyptian numerals, which are explained but will be familiar to students
who did Activity Sheet 1-1. Then we shift to more familiar notation that captures
the same idea. (For simplicity, we ignore the fact that the Egyptians had special
symbols for the three common fractions 1

2 , 2
3 , and 3

4 .)

3See pp. 29–32 of Roger Cooke’s The History of Mathematics (John Wiley & Sons, Inc., 1997)
for an excellent description of this.
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Solutions

1. This will not be easy for some students. They might need help seeing how the
filled-in information for 5

12 works. See Display 3.1 for the completed table.

................................................................

∩ 1
12

................................................................
2
12 = 1

6
................................................................

3
12 = 1

4
................................................................

4
12 = 1

3
................................................................ ................................................................

∩ 5
12 = 1

3 + 1
12

................................................................
6
12 = 1

2
................................................................ ................................................................

∩ 7
12 = 1

2 + 1
12

................................................................ ................................................................
8
12 = 1

2 + 1
6

................................................................ ................................................................
9
12 = 1

2 + 1
4

................................................................ ................................................................
10
12 = 1

2 + 1
3

................................................................ ................................................................ ................................................................

∩ 11
12 = 1

2 + 1
3 + 1

12

12
12 = 1

Display 3.1

2. These questions provide some good practice in thinking about and manipu-
lating fractions. No quick algorithm works easily for all such questions. One
approach (called the “greedy method”) is to find the largest unit fraction that
is smaller than the number, subtract it, and repeat the process until the num-
ber is “used up.”

(a)
4
7

=
1
2

+
1
14

(“the half and the fourteenth”) (b)
11
16

=
1
2

+
1
8

+
1
16

(c)
13
27

=
1
3

+
1
9

+
1
27

(d)
23
50

=
1
3

+
1
10

+
1
50

+
1

150

3. The top symbol represents 1
10 , as noted at the beginning of this sheet. The

rest of the numerals are the successive multiples of 1
10 , up to 10 · 1

10 = 1. You
might need to remind students that numerals next to each other are intended
to be added. See Display 3.2 for the complete list of translated symbols.

4. This activity gives students practice in manipulating fractions, especially in
subtraction. Some parts are not easy. The parts with even denominators are
doubled simply by halving the denominator. But if the denominator is odd,
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some ingenuity is needed. Modern students have the advantage of being able
to use general fractions in order to find the appropriate unit fraction, a process
unknown to the ancient Egyptians. See Display 3.3 for the completed table.

1
10

1
5 = 2

10
1
4 + 1

20 = 3
10

1
3 + 1

15 = 4
10

1
2 = 5

10
1
2 + 1

10 = 6
10

1
2 + 1

5 = 7
10

1
2 + 1

4 + 1
20 = 8

10
1
2 + 1

3 + 1
15 = 9

10

1 = 10
10

Display 3.2

part × 2 × 4 × 8
1
16

1
8

1
4

1
2

1
28

1
14

1
7

1
4 + 1

28

1
18

1
9

1
5 + 1

45
1
3 + 1

9

1
13

1
7 + 1

91
1
4 + 1

18 + 1
468

1
2 + 1

9 + 1
234

Display 3.3

5. Students should see that half of any “part” is the “part” with the “size” (the
denominator) doubled.

(a) 1
32 (b) 1

30 (c) 1
700

6. This generalizes the previous question. To divide a “part” by any whole num-
ber n, just multiply its “size” (its denominator) by n. For example, 1

3÷7 = 1
21 .

(Of course, students may give a wide variety of examples.)

Sheet 3-2: Place Value Fractions

• Main Feature •
Forerunners of decimal fractions

This sheet could be called “Decimal Fractions” because that is the modern idea it
illustrates. However, the word decimal refers to base ten, and its historical forerun-
ner was the Babylonian system based on sixty. This became the standard system
for representing certain numbers in Europe as well. For example, it was used in
trigonometric tables for a long time. And, of course, we still use it when we measure
time.
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These activities extend the ideas of Sheet 1-2, but do not depend on them.
To make this sheet independent of that one, some basic information about the
Babylonian numeration system is repeated.

The mathematics of Mesopotamia from 2500 bce to
300 bce or so is usually called “Babylonian.” This over-
simplifies the history of that region. During that very long
period of time, a variety of civilizations occupied that area.
The Sumerians invented the method of cuneiform writing
on clay tablets sometime during the third millennium bce,
and successive civilizations adopted it. The Babylonians

are perhaps best known for the reign of Hammurabi in the 18th century bce. The
history of this area would be a good topic for student projects linking mathematics
with social studies.4 We conform to custom by calling all of the mathematics of this
era and region “Babylonian.”

Solutions

Questions 1–4 revisit the Babylonian place value system for whole numbers, a pre-
requisite for understanding their system of fractions.

1. (a) 24 (b) 16 (c) 41

2. (a) GFFF (b) GGFF (c) GGGGG

3. Students without calculators may need some scrap paper for this one.

(a) 1 · 60 + 13 = 73 (b) 10 · 602 + 12 · 60 + 23 = 36,743

4. The algorithm for this is the same as it is in our base-ten system: Find the
largest power of the base that is smaller than the number; see how many copies
of it you can subtract; then repeat the process with what’s left until you use
up the number. Our long standard long division algorithm does exactly this,
in a very compact “shorthand” notation.

(a) 13 · 60 + 32 GFFF GGGFF

(b) 3 · 602 + 10 · 60 + 25 FFF G GGFFFFF

The convenient base-sixty notation used here is the one used by historians of
ancient mathematics. You may have to help students see how it is analogous to
our own decimal notation. The semicolon, introduced in the examples just before
#7, corresponds to our decimal point. It separates the whole-number part from the
fractional part. The commas just separate the “digits” from each other; they are

4See pages 43–44 of The History of Mathematics by Roger Cooke (John Wiley & Sons, 1997)
for a summary listing of the major civilizations of that area during this time period.
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needed because we sometimes need two of our digits to describe a single place value
in their base-sixty system.

You might point out to students that we measure time with a
(partial) base-sixty system: hours, minutes, seconds. In fact, many
microwave ovens “count down” the time with a display a lot like the
notation used here. For instance, it will count down the seconds for
2 minutes of cooking time like this: 2:00, 1:59, 1:58, 1:57. . . .

5. (a) 2, 24, 31 2 · 602 + 24 · 60 + 31

(b) 30, 1, 17 30 · 602 + 1 · 60 + 17

(c) 1, 11, 50, 12 1 · 603 + 11 · 602 + 50 · 60 + 12

The following questions focus on how the Babylonian system of fractions is sim-
ilar to our own decimal system. Working through these activities will give students
a deeper understanding of how our system of decimal fractions works. It will also
provide some practice in working with common fractions.

6. The factors of 60, besides 1 and 60, are 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30.
(This means that a common fraction with any of these denominators can be
expressed as a “one-place” fraction in the Babylonian system.)

7. 7; 15 = 7 + 15
60 = 71

4

5; 22, 30 = 5 + 22
60 + 30

3600 = 5 + 1350
3600 = 5 + 3·450

8·450 = 53
8

8. Some scrap paper and a calculator would be useful here.

(a) 1; 20 = 1 + 20
60 = 11

3

(b) 2; 30, 30 = 2 + 1
2 + 1

120 = 2 61
120

(c) 3; 24; 36 = 3 + 24
60 + 36

3600 = 3 + 2
5 + 1

100 = 3 41
100

(d) 4; 1, 1, 1 = 4 + 1
60 + 1

3600 + 1
216,000 = 4+ 3600+60+1

216,000 = 4 3661
216,000 (Note: This

fraction is in lowest terms; 3661 is not divisible by 2, 3, or 5, which are
the only prime factors of 603.)

Questions 9 and 10 illustrate the power of a place value system. You can easily
expand on these sample question by making up similar ones of your own. You
can emphasize the efficiency of the system by having your students convert the
questions into to common fractions and add, but that is a very tedious exercise for
these examples. Simpler cases are not hard to construct.

One important note is in order here. We have avoided without comment these
two significant difficulties with the Babylonian system of fractions:

• There was no “zero” placeholder. (This was explained in Unit 2.)
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• There was no mark (like the semicolon we used) to separate the whole-number
part from the fractional part. So they would write 2 × 30 = 1, and not
2× 0; 30 = 1. Of course, exactly the same equation could mean 2× 30 = 1, 0!

Context was the only way to resolve the ambiguities caused by the absence of such
symbols. If you construct your own examples and questions, you might want to
avoid cases in which a zero value occurs.

9. (a) 13
4 + 11

3 = 2 + 9+4
12 = 3 1

12

(b) Sum: 6; 30 Check: 22
3 + 35

6 = 5 + 4+5
6 = 61

2

10. Parts (a) and (b) involve “carrying”; part (d) involves “borrowing.”

(a) 6; 5, 31, 32 (b) 11; 2, 39, 5 (c) 7; 5, 17, 8 (d) ; 59, 53, 30

Sheet 3-3: Name and Count

• Main Feature •
Fractions and size

This activity sheet focuses on numerators and denominators. To understand
them, we should think of fractions primarily in terms of counting, rather than di-
vision. This is a subtle matter of emphasis. Think of a fraction as counting copies
of a single, small enough part. Instead of measuring out a pint and a cup of milk
for a recipe, it’s easier to measure three cups. Instead of representing a fractional
amount by identifying the largest single part within it and then exhausting the rest
by successively smaller parts, simply look for a small part that can be counted up
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enough times to produce exactly the amount you want. Two numbers then specify
the total amount: the size of the unit part, and the number of times it is “counted.”

That was how the early Chinese mathematicians thought about fractions. Their
Nine Chapters on the Mathematical Art, from about 100 bce, contains a notation
for fractions much like ours. (The one difference is that they avoided “improper
fractions” such as 7

3 ; they would write 21
3 instead.) A similar notation appears in

Hindu manuscripts as early as the 7th century ce. They wrote the two numbers
one over the other, with the size of the part below the number of times it was to be
counted. No line separated one number from the other. For instance (using modern
numerals), the fifth part of the basic unit taken three times would be written as 3

5
.

This Hindu custom of writing fractions as one number over another
spread to Europe around the time of the Crusades. Latin writers of
the Middle Ages used the terms numerator (“counter” – how many)
and denominator (“namer” – of what size) as a convenient way to
distinguish the top number of a fraction from the bottom one. If we
still spoke Latin, these terms would make much more sense to students!

The horizontal bar between the top and bottom numbers was inserted by the
Arabs by sometime in the 12th century. It appeared in most
Latin manuscripts from then on, except for the early days of
printing (the late 15th and early 16th centuries), when it prob-
ably was omitted because of typesetting problems. It gradually
came back into use in the 16th and 17th centuries. Curiously,
although 3/4 is easier to typeset than 3

4 , this “slash” notation
did not appear until about 1850.

The questions this worksheet help to develop a sequence of important ideas:

• denominators name the size of the pieces being counted;
• numerators count the same-size pieces;
• larger denominators result in smaller fractions;
• larger numerators result in larger fractions;
• changing the denominator affects the numerator;
• common denominators make it easy to compare fractions.

Solutions

1. Here are some suggestions. Denominator is related to “denomination” (a
particular value of money or a specific branch of a religion) and “nominate” (to
name a candidate for a job or election). Numerator is related to “enumerate,”
(to count something) and “numeral” (a counting symbol). Students may come
up with other suitable words.
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2. The size of the unit part is 1
8 ; you have 3 of them. Doublng the denominator

gives you 3
16 , which is less pizza because the unit part is now smaller. (You

have only half as much pizza.)

3. This question focuses students’ attention on what the denominator of a frac-
tion tells us. In particular, it emphasizes the fact that larger denominators
represent smaller sizes.

1
256 < 1

64 < 1
12 < 1

9 < 1
8 < 1

6 < 1
3 < 1

2

4. This question is a “steppingstone” to bring out the usefulness of common
denominators. Its simplicity emphasizes the fact that conversion to a common
denominator reduces a fraction situation to a whole number situation.

1
9 < 2

9 < 4
9 < 5

9 < 7
9 < 8

9

5. This exercise illustrates the contrast between numerators and denominators in
determining the size of a fraction. Increasing the numerator increases the size
of the fraction; increasing the denominator decreases the size of the fraction.
The larger fraction in each pair is as follows.

(a) 5
7 (b) 4

7 (c) 5
8 (d) 4

5 (e) 2
5 (f) 23

35 (g) 53
91 (h) 15

37 (i) 45
83

6. These questions provide a real-world instance of expressing a fraction using
different denominators. In order to use common denominators, students must
understand that multiplying both numerator and denominator by the same
number does not change the value of the fraction.

(a) 1
4 (b) 2 (c) 3 (d) 4 (e) 1

4 = 2
8 = 3

12 = 4
16

7. (a) 1
5 = 4

20 (b) 4
7 = 12

21 (c) 2
3 = 10

15 (d) 9
12 = 3

4 = 15
20

8. These questions should be done without a calculator. The denominators in
this exercise are deliberately chosen so that the least common denominator is
just the product of the two given ones, and the computations are essentially
single-digit facts that should be automatic for students by now.

(a) 4
7 = 36

63 and 5
9 = 35

63 , so 4
7 is 1

63 larger than 5
9 .

(b) 5
6 = 55

66 and 9
11 = 54

66 , so 5
6 is 1

66 larger than 9
11 .



38 Fraction Arithmetic

Sheet 3-4: Working with Parts

• Main Feature •
Fraction arithmetic

The Chinese book called Nine Chapters on the Mathematical Art,
shows that the Chinese of 100 bce thought about and wrote frac-
tions much as we do today. Many of the usual rules for operating
with fractions appear in the Nine Chapters : how to reduce a frac-
tion that is not in lowest terms, how to add fractions, and how to
multiply them. For instance, the rule for addition (translated into
our terminology) looks like this:

Each numerator is multiplied by the denominators of the other fractions.
Add them as the dividend, multiply the denominators as the divisor.
Divide; if there is a remainder, let it be the numerator and the divisor
be the denominator.5

This is pretty much what we still do!

For multiplying and dividing, the method in the Nine Chapters also involved
finding a common denominator. This made the process of division natural and
obvious. For example, to divide 2

3 by 4
5 , they would first multiply both the numerator

and denominator of each fraction by the denominator of the other, so that

2
3
÷ 4

5
becomes

2 · 5
3 · 5 ÷ 3 · 4

3 · 5; that is,
10
15

÷ 12
15

.

Now that both fractions are written in the same measurement unit (denominator),
the question becomes a whole-number division problem: dividing the numerator of
the first fraction by the numerator of the second. In this case,

2
3
÷ 4

5
=

2 · 5
3 · 5 ÷ 3 · 4

3 · 5 =
10
15

÷ 12
15

= 10 ÷ 12 =
5
6
.

2
3 ÷

5
7 = 2

3 ×
7
5 = 14

15

The way in which fractions were written affected
the development of their arithmetic. For instance,
the “invert and multiply” rule for dividing fractions
was used by the Hindu mathematician Mahāv̄ıra

5Kangshen Shen, John N. Crossley, and Anthony W.-C. Lun. The Nine Chapters on the Math-
ematical Art: Companion and Commentary. Oxford Univ. Press, Oxford & New York, 1999; p. 70.
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around 850 ce. However, it was not part of European arithmetic until the 16th cen-
tury, probably because it made no sense unless fractions, including fractions larger
than 1, were written as one number over another.

The questions of this activity sheet build on the ideas of Activity Sheet 3-3.
They focus on the basic arithmetic operations for fractions, drawing on the rules
used by the Chinese, the Hindus, and the Arabs for historical motivation. All of
these rules are based on one fundamental idea:

Find a small enough measurement unit for all the
fractions to be integral multiples of that unit. Then
the computation becomes whole-number arithmetic.

In other words, the key to all fraction arithmetic is finding a common denominator.

Solutions

1. The purpose of this first, very simple question is to make sure that students
understand the basic idea of counting parts.

(a) 5; 3 (b) 3
10 ; less; it is only half as much.

2. This is an easy exercise in finding common denominators.

(a) 2
8 + 1

8 = 3
8 (b) 3

6 + 2
6 = 5

6 (c) 4
12 + 3

12 = 7
12 (d) 5

20 = 4
20 = 9

20

(e) Yes. You can multiply the numerator and denominator given here by any
nonzero whole number to get another correct answer.

3. The Nine Chapters rule for adding fractions differs from our usual method
in two ways. Watch for these two differences in students’ answers. (1) The
denominator of the sum is always the product of the denominators of the
summands, even if there is a smaller common denominator. Presumably the
Chinese would have reduced the sum to a simpler fraction after adding, but
not during the addition process, as we sometimes do. (2) The sum is never
written as an improper fraction; any sum greater than 1 should be expressed as
a “mixed number.” (Note: Using a calculator for part (c) will allow students
to focus on the main idea more clearly.)

(a)
2
3

+
3
5

=
5 · 2 + 3 · 3

3 · 5
=

19
15

= 1
4
15

(b)
1
2

+
4
5

+
7
8

=
5 · 8 · 1 + 2 · 8 · 4 + 2 · 5 · 7

2 · 5 · 8
=

40 + 64 + 70
80

=
174
80

= 2
14
80

(c)
1
3

+
3
4

+
5
8

+
1
6

=
4 · 8 · 6 · 1 + 3 · 8 · 6 · 3 + 3 · 4 · 6 · 5 + 3 · 4 · 8 · 1

3 · 4 · 8 · 6

=
192 + 432 + 360 + 96

576
=

1080
576

= 1
504
576
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This example can be used to illustrate the convenience of reducing to a
simpler denominator. The sum reduces to 1

7
8
.

4. As mentioned in the notes for #3, there are two main differences: (1) the
denominator of the sum is always the product of the denominators of the
summands, and (2) the sum is never an improper fraction. (Note: What is
important for operations with fractions is to have a common denominator.
It doesn’t need to be the least common denominator. The Chinese method
avoids the problem of finding a least common denominator by always using
the most obvious choice of common denominator.)

5. As in the rule for addition, the denominator of the difference is always the
product of the denominators of the original fractions, even if there is a smaller
common denominator. The Chinese might have reduced the difference to a
simpler fraction later, but not during the subtraction process. In all of these
examples, the first fraction is larger than the second. This reflects the fact
that, at the time of the Nine Chapters, the idea of negatives as numbers was
still many centuries in the future. You might also want to observe that the
“Divide” step is not necessary because the result will always be less than the
first fraction.

(a)
2
3
−

3
5

=
2 · 5 − 3 · 3

3 · 5 =
10 − 9

15
=

1
15

(b)
7
8
− 1

6
=

7 · 6 − 1 · 8
8 · 6 =

42 − 8
48

=
34
48

(c)
3
4
− 5

8
=

3 · 8 − 5 · 4
4 · 8 =

24 − 20
32

=
4
32

6. (a) Cancel any factors that are in both the numerator and the denominator.

(b) (3a): 1
4
15

is already in lowest terms. (3b): 2
14
80

= 1
7
40

(3c): 1
504
576

= 1
7
8

(c)
54
90

=
2 · 3 · 9
2 · 5 · 9 =

3
5

462
495

=
2 · 3 · 7 · 11
3 · 3 · 5 · 11

=
2 · 7
3 · 5 =

14
15

7. Do your students already know that the Chinese never used “improper” frac-
tions — that is, fractions in which the numerator is larger than the denomi-
nator? It would be good to tell or remind them about this here. It explains
why there is no division step at the end of their rule. Since the Chinese only
used fractions that were less than 1, the product would always be less than 1.
The fact that multiplying a quantity by a number less than 1 makes the result
smaller is an important, common-sense idea that should be reinforced.

(a)
6
7
× 5

8
=

6 · 5
7 · 8

=
30
56

(b)
11
12

× 7
9

=
11 · 7
12 · 9

=
77
108
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(c)
5
6
× 1

6
=

5 · 1
6 · 6

=
5
36

(d)
12
100

× 3
100

=
12 · 3

100 · 100
=

36
10, 000

8. Our common “invert and multiply” rule for dividing one fraction by another is
efficient, but it hides the common-sense idea of division. The Chinese method
makes the process a much more natural reflection of the concept. These ques-
tions invite a class discussion about why both methods always give the same
results.

(a)
5
8
÷ 3

7
=

35
56

÷ 24
56

= 1
11
24

3
10

÷ 4
9

=
27
90

÷ 40
90

=
27
40

(b)
5
8
÷ 3

7
=

5
8
× 7

3
=

35
24

= 1
11
24

3
10

÷ 4
9

=
3
10

× 9
4

=
27
40

Sheet 3-5: Decimals

• Main Feature •
Fractions in our base-ten system

Decimal fractions appeared in Chinese and Arabic mathe-
matics, but these ideas did not migrate to the West. In Europe,
the first use of decimals for fractions occurred in the 16th cen-
tury. They were made popular by Simon Stevin’s 1585 book,
The Tenth. Stevin, a Flemish mathematician and engineer,
showed how writing fractions as decimals allows operations on
fractions to be carried out using the much simpler algorithms
of whole-number arithmetic. Within a generation, the use of
decimal fractions by scientists such as Johannes Kepler and John Napier paved the
way for their general acceptance.

However, the use of a period as the decimal point was not uniformly adopted.
For quite a while, many different symbols — including an apostrophe, a small wedge,
a left parenthesis, a comma, and a raised dot — were used to separate the whole and
fractional parts of a number. In 1729, the first arithmetic book printed in America
used a comma for this purpose, but later books tended to favor the use of a period.
Usage in other parts of the world continues to be varied, with the comma and the
raised dot still being used in many countries. Most English-speaking countries use
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the period, but many other nations prefer the comma. International agencies and
publications often accept both comma and period. Modern computer systems allow
the user to choose, as a language setting, whether the decimal separator should be
written as a comma or a period.

Stevin’s innovation and its application to science and practical computation had
an important effect on how people understood numbers. Up to Stevin’s time, things
like

√
2 or π were not quite considered numbers. They were ratios that corresponded

to certain geometric objects, but when it came to thinking of them as numbers,
people felt queasy. The invention of decimals allowed people to think of

√
2 as 1.414

and of π as 3.1416 (more or less). It’s no coincidence that it was Stevin who first
thought of the real numbers as points on a number line and who declared that all
real numbers should have equal status.

With the advent of calculators in the middle of the 20th century, it
seemed as if decimals had won the day permanently. But the old sys-
tem of numerators and denominators still has many advantages, both
computational and theoretical, and it has proved to be remarkably re-
silient. We now have calculators and computer programs that can work

with common fractions. Percentages are used in commerce, common fractions and
mixed numbers appear in recipes, and decimals occur in scientific measurements.
These multiple representations are a matter of convenience and also a reminder of
the rich history behind ideas we use every day.

Interdisciplinary Projects: For a worthwhile project that combines science, math,
and composition, ask students to find out some things that Stevin, Kepler, and
Napier were famous for and write up their findings. You can also make a connection
to geography, modern history, and literature by way of Stevin’s nationality. He was
Flemish; that is, he was born in Flanders. Where was/is Flanders? (Roughly, it is
the northern part of Belgium now, but more can be said
about that.) In Flanders Fields is a famous poem; what
is it about? (Written by Major John McCrae, a Canadian
military doctor, it refers to one of the major battlefields
of World War I. This, too, can be expanded into a longer
assignment, if you wish.)

Solutions

This activity sheet focuses on representing fractions as decimals and computing with
decimals. It begins very simply, to check on student familiarity with the place value
structure of our system.

1. From left to right: units, tenths, hundredths, thousandths.
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2. (a) 0.7 =
7
10

It is in lowest terms.

(b) 0.75 =
75
100

=
3
4

(c) 0.008 =
8

1000
=

1
125

(d) 0.33 =
33
100

It is in lowest terms. (It is not 1
3 . A student who makes this

error will give you a “teachable moment” — use it to expand a bit on the
difference between these two numbers.)

(e) 2.12 =
212
100

=
53
25

(f) 1.2525 =
12,525
10,000

=
501
400

If your students know (or can easily be told) what a prime number is, there is a
natural follow-up line of questioning here, something like this:

• What prime numbers are factors of 10? of 100? of 1000? of any power of 10?
(2 and 5 only)

• What does it mean to say that a fraction is in lowest terms? (The numerator
and denominator have no factors in common.)

• If a fraction with denominator 10 is not in lowest terms, what must be a
factor of the numerator? (2 and/or 5) What if the denominator is 100?
(same answer) 1000? (same answer) any power of 10? (same answer)

• How do you know if a (whole) number is divisible by 2? (Its unit digit is even.)
How do you know if it is divisible by 5? (Its unit digit is 5 or 0.)

• So how can you be sure that a fraction such as
501
400

is really in lowest terms?

(501 ends in an odd digit that is not 5, so it can’t be divisible by 2 or 5.)

• [a more sophisticated question] Why do these divisibility tests work? (Because
the rest of the number — without the units part — is divisible by 10, so it
must be divisible by 2 or 5. Therefore, if the unit part is divisible by 2 or 5,
too, the entire number must be.)

3. This question suggests the special role of 2 and 5 as factors in the decimal
system. If you did not pursue the line of questioning above, you might bring
out some of those ideas here. To focus on factors, have students do this part
without using a calculator.

(a)
4
5

= 0.8 (b)
13
20

= 0.65 (c)
121
250

= 0.484 (d)
17
8

= 2.125
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4. Students might need some scrap paper for this. The common-fraction calcula-
tions in each part should be done without a calculator, and the answer should
be expressed as a common fraction. You might also ask students to convert
those answers to decimals as a check to see if they got the same result both
ways. Responses to the “which was easier” questions are likely to vary, but it
would not be surprising if most students find that the decimals are easier to
add and subtract, but the common fractions are easier to multiply and divide.

(a)
5
8

+
2
5

=
25 + 16

40
=

41
40

0.625 + 0.4 = 1.025

(b)
3
4
− 72

125
=

750− 576
1000

=
174
1000

=
87
500

0.75− 0.576 = 0.174

(c)
7
8
× 3

25
=

7 × 3
8 × 25

=
21
200

0.875× 0.12 = 0.105

Decimal multiplication without a calculator might be unfamiliar to some
students. It is good for them to know, but not essential for this example.
These numbers have been chosen to make the hand calculation easy.

(d)
3
8
÷ 2

5
=

3
8
× 5

2
=

3 × 5
8 × 2

=
15
16

0.375÷ 0.4 = 0.9375

As in the previous part, division without a calculator is a good skill
to know, but not essential here. Again, these numbers are chosen to
minimize tedious hand calculation.

5. When fractions are expressed as decimals, their relative sizes become imme-
diately obvious. This illustrates a convenient feature of decimals. However,
expressing common fractions as decimals without a calculator can be a tedious
task in long division. Therefore, unless part (c) is done with a calculator, stu-
dents will not see this as a convenience at all! Parts (a) and (b) are quick
checks to see if students are thinking about decimals appropriately.

(a) 0.3761

(b) Look for the first place where they are different. The one with the larger
digit is the larger number. (Note: This test works for all finite decimals.
There is a small complication in the case of infinite decimals, which can
be ignored here.)

(c)
3
5

<
83
137

<
5
8

<
247
391

<
16
25

<
11
17

<
613
942

<
2
3

As decimals:

0.6 < 0.605... < 0.625 < 0.631... < 0.64 < 0.647... < 0.650... < 0.666...

6. (a) The data for this question comes from the web page

www.unc.edu/rrowlett/units/custom.html,

by Russ Rowlett at the University of North Carolina at Chapel Hill. The
picture of the plowman next to the table mirrors the fact that a furlong
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was traditionally the length of the furrow plowed on Saxon farms.

furlong chain rod yard foot

1/8 mile 1/10 furlong 1/4 chain 2/11 rod 1/3 yard

0.125 0.1 0.25 0.182 0.333

(b) Thinking about how to approach this problem is a worthwhile exercise in
reasoning. If you are using this material in class, you might ask students
for suggestions. Perhaps the easiest way (but maybe not the most obvious
one) is to calculate 1 foot as a fraction of a mile and then take the
reciprocal of that. This calculation is just the product of the decimals or
of the fractions. Use of a calculator is appropriate here.

By decimals: 0.125 × 0.1 × 0.25 × 0.182 × 0.333 = 1.8939375e−4 is the
“number” of miles in a foot. Divide 1 by this number to get the number
of feet in a mile, 5280.00528.

By fractions:
1
8
× 1

10
× 1

4
× 2

11
× 1

3
=

2
10560

=
1

5280
is 1 foot as a fraction

of a mile, so 5280 is the number of feet in a mile. The answers should
agree, and they do, within a very small roundoff error.

(c) Decimals make this a straightforward calculator computation:
(2× 0.125) + (4 × 0.1× 0.125) + (3 × 0.25× 0.1× 0.125) = 0.309375 mi.
Multiply this by 5280 to get the number of feet, 1633.5 ft.

One issue raised only indirectly in this activity sheet is the question of which
decimals are finite and which are infinite. This is related to “rounding off,” of
course, but it can run much deeper than that. Historically, Stevin as an engineer
was not concerned with infinite decimals. He simply needed to get “close enough”
to the exact value of any fraction, which meant getting within the margin of error
of the tools of his time. Decimals, finite or infinite, will
do that. To get a value for 1

3 with 0.000001 tolerance,
for example, it suffices to carry out the division just six
places, to 0.333333.

If you want to pursue the question of finite versus infinite decimal fractions with
your students, you might begin by asking if they noticed anything special about
the denominators of all the fractions in activities 4 and 5. Help them see that they
are all products of 2’s and 5’s only. Why is that? Well, the “easy” answer is that
2× 5 = 10, so any power of 10 is a product of 2’s and 5’s. This means that all those
examples are easily turned into finite decimals.

You can take this idea deeper by asking what would happen if a denominator
had some other (prime) factor, such as 3 or 7 or 11. Students might experiment with
turning such fractions into decimals. If they are not using calculators, 3 and 11 are



46 Fraction Arithmetic

more convenient factors than 7. In any case, dividing such a denominator into any
(relatively prime) numerator shows that these decimals never terminate; they are
always infinite. In fact, since any finite decimal must be expressible as a fraction
with some power of 10 as its denominator, a reduced fraction with a denominator
that has a prime factor other than 2 or 5 must convert to an infinite decimal.

Sheet 3-6: Percent

• Main Feature •
The special case of hundredths

The Latin word for “hundred” is centum. The term per cent (“for each hun-
dred”) as a name for fractions with denominator 100 began with the commercial
arithmetic of the 15th and 16th centuries, for quoting interest rates in hundredths.
This custom has persisted in business, reinforced in the U.S. by a monetary system
based on dollars and cents (hundredths of dollars). The continued use of percents
as a special branch of decimal arithmetic comes primarily from its connection with
money. The percent symbol evolved over several centuries. It started
as a handwritten abbreviation for “per 100” around 1425 and was grad-
ually transformed into “per 0

0” by 1650, then simply to “0
0 ,” and finally

to the % sign we use today.

The logic and the history of percents are somewhat at odds with each other.
Logically, a “percent” is just a two-place decimal. For instance, 15% is just another
way of writing 0.15. Historically, however, percents were in common use some 150
years or so before Stevin’s popularization of decimal fractions.

Solutions

The main purpose of this activity sheet is to show students that percents are simply
fractions with denominator 100. If they think of a percent as a number over 100,
then the arithmetic of percents is just a special case of something familiar. The first
two questions establish the meaning of the word, then the symbol for it.

1. (a) 6 percent of $2.00 = 12 cents (6 cents out of every dollar)

(b) 7 percent =
7

100
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2. These three parts move from a direct application of “out of every hundred” to
the need for some proportional reasoning.

(a) 7% of 400 = 28 (b) 10% of 250 = 25 (c) 5% of 40 = 2

Students who have trouble with parts (b) and (c) can be encouraged to put
the percent in fraction form and translate “of” as “times.”

Here is a student research project that combines history and numbers:

Look up at least four different types of money, from four different places
in 15th-century Europe, and describe how they are related to each other.
In particular, how could you fairly exchange each type for the others?

One useful source is http://www.treasurerealm.com/coinpapers/dictionary/. That
site could easily be used as a starting point for this project, but we do not have any
way of judging the factual accuracy of the many specific definitions given there.

3. (a) 4% of 300 florins is 12 florins each month.

(b) 12× 24 (months) = 288 florins in all.

4. These examples reinforce students’ understanding of commonly used percent-
ages.

(a) 25% =
1
4

(b) 50% =
1
2

(c) 20% =
1
5

(d) 15% =
3
20

(e) 33% =
33
100

(f) 75% =
3
4

(The answer to part (e) is not 1
3 . The values are close, but not the same.)

5. These examples establish that whole-number percents are simply two-place
decimals (hundredths).

(a) 25% = 0.25 (b) 12% = 0.12 (c) 3% = 0.03

(d) 86% = 0.86 (e) 33% = 0.33 (f) 5% = 0.05

6. (a) 1% of $13.00 = $0.13 (b) 5% of $12.00 = $0.60

(c) 40% of $32.00 = $12.80 (d) 18% of $2.50 = $0.45

7. This idea is a natural extension of what has come before. In fact, many
students will already have figured it out on their own, even if they have not
already seen it in class. The use of calculators here will allow students to
focus on the translation idea without getting bogged down in the routine
multiplication.

(a) 0.2× $43.60 = $8.72 (b) 0.42× 7,956 = 3341.52

(c) 0.07× $245 = $17.15 (d) 0.61× 1159 = 706.99

(e) 1.5 × 360 = 540
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8. Students responses will vary, of course. Here is the main idea.

(a) 100% is the total amount available, so 110% is more effort than the athlete
can have.

(b) He is trying to say that the athlete is giving effort beyond what could be
expected.

9. (a) $80 + 0.4 × $80 = $80 + $32 = $112

(b) No. 40% off the selling price of $112 is 0.4 × $112 = $44.80, so the sale
price is $112 − $44.80 = $67.20. This is $12.80 less than the wholesale
price she paid. (The sale price can be computed more efficiently by
thinking of it as 60% of the tag price: 0.6× $112 = $67.20.)

10. Yes and no. It doesn’t make any difference in the total amount collected,
because

([bill]× 1.15)× 1.07 = ([bill]× 1.07)× 1.15.

(Multiplication is associative and commutative.) However, more of the added
amount goes for tax in the first case than in the second. If your students are
having trouble seeing this, you might have them work out the amounts for a
particular example, say a basic bill of $100.

A useful follow-up question is, “Is this the same as charging a total of 22%
to the basic bill?” In this case, the answer is no; the actual added percentage
comes from the product 1.15 × 1.07, which is 1.2305. This means that the
added charges total 23.05%. Again, you might find it better to have students
try a particular example or two before coming up with a general solution.
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Less than Nothing?

Mathematical
Focus

Negative Numbers

Historical
Connections

India, 7th & 12th centuries

The Arab World, 9th century

Europe, 15th–19th centuries

Did you know that negative numbers were not generally accepted, even by math-
ematicians, until a few hundred years ago? It’s true. Columbus discovered

America more than two centuries before negatives joined the society of numbers.
And they didn’t become first-class citizens until the middle of the 19th century,
about the time of the American Civil War. Students who have trouble with neg-
ative numbers are often just reflecting the difficulties faced by some of the best
mathematical minds of times gone by.

Numbers arose from counting and measuring things: 5 goats, 37 sheep, 100 coins,
15 inches, etc. Fractions were just a way of counting with smaller units: 5

8 in. is five
eighths of an inch, 3

10 mi. is three tenths of a mile, and so on. If you’re counting or
measuring, the smallest possible quantity must be zero, right? After all, how can
any quantity be less than nothing? It is not too surprising, then, that the idea of a
negative number — a number less than zero — was difficult to accept.

Negative numbers first appeared when people began to solve problems that can
be expressed as equations, such as:

“I am 7 years old and my sister is 2. When
will I be exactly twice as old as my sister?”

This translates into solving the equation

7 + x = 2(2 + x),

49



50 Negative Numbers

where x is the number of years from now that this will happen. As you can see, in
this case the answer is 3 (years from now). But the same kind of question can be
asked for any ages. For instance, we could ask for the solution of

18 + x = 2(11 + x).

In this case, however, the solution is negative: x = −4.

The scribes of Egypt and Mesopotamia were able to solve such equations more
than 3000 years ago, but they never considered the possibility of negative solutions.
They would say that our second problem had no solution. Chinese mathematicians
of that era seem to have been able to handle negative numbers in intermediate
steps towards solving equations. But they didn’t accept them as final answers. Our
mathematics, like much of our Western culture, is rooted mainly in the work of
ancient Greek scholars. Despite the depth and subtlety of their mathematics and
philosophy, the Greeks ignored negative numbers completely.

Brahmagupta, a prominent Indian mathematician of the 7th century, treated
positive numbers as possessions and negative numbers as debts. He also stated
rules for adding, subtracting, multiplying, and dividing with negative numbers.
Later Indian mathematicians continued in this tradition, but they
regarded negative quantities with suspicion for a very long time.
Five centuries later, Bhāskara, after stating that the two roots
of the equation x2 − 45x = 250 are 50 and −5, says: “Here, the
second [answer] is not to be taken, because of its inapplicability.
For people have no clear understanding in the case of a negative
quantity.”6

Indian mathematics first came to Europe through the Arabs, who did not use
negative numbers. Al-Khwārizmı̄, for example, recognized that a quadratic equation
can have two roots, but only when both of them are positive. This may have resulted
from the fact that his approach to solving such equations depended on interpreting
them in terms of areas and side lengths of rectangles, a context in which negative
quantities made no sense.

The Arabs did understand how to expand products of the form

(x − a)(x − b).

They knew that in this situation negative times negative is positive, and negative
times positive is negative. But they only applied this to problems involving subtrac-
tions whose answers are positive. So, while these “laws of signs” were known, they
weren’t understood as rules about how to operate with independent things called
“negative numbers.” Thus, European mathematicians learned from their predeces-
sors a kind of mathematics that dealt only with positive numbers.

6From Bhāskara’s Bı̄jagan. ita; translation by Kim Plofker.
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European mathematics made tremendous leaps after the
Renaissance, motivated by astronomy, navigation, physical
science, warfare, commerce, and other applications. In spite
of that progress, or perhaps because of its utilitarian focus,
there was continued resistance to negative numbers. In the
16th century, even such prominent mathematicians as Car-
dano in Italy, Viète in France, and Stifel in Germany rejected

negative numbers as “fictitious” or “absurd.” When negatives appeared as solutions
to equations, they were called “fictitious solutions” or “false roots.” But by the early
17th century, the tide was beginning to turn. As the usefulness of negative numbers
became too obvious to ignore, some European mathematicians began to use them.

Sheet 4-1: What Are Negative Numbers?

• Main Feature •
Everyday occurrences

of negative numbers

This activity sheet focuses on students’ common-sense understanding of negative
numbers. It also looks at how negatives can arise naturally in real-world situations.

Solutions

1. Students do not need to know any formal algebra to solve these simple equa-
tions. They can be done by guess-and-check. The only necessary algebra here
is the idea that “equation” is a statement that requires the values on the two
sides of the = sign to be the same. Of course, the algebraic solution process
is more efficient for anyone who already knows how to use it.

(a) The solution is 3. Check: 7 + 3 = 2 × (2 + 3); 10 = 2× 5.

(b) 13 + = 2 × (9 + ). The solution is −5.

Check: 13 + (−5) = 2 × (9 + (−5)); 8 = 2 × 4.

(c) This part connects the calculations with their real-world meaning. The
solution −5 means that Pedro’s age was exactly twice Mia’s age 5 years
ago, when he was 8 and she was 4. (Thus, in this case the negative signals
going backward, rather than forward, in time.)
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2. This question takes a little thought about what the equation notation means.
If your students have never seen equations involving an unknown x before, you
might have to explain this answer to them. 4x + 20 means “add something
(4x) to 20.” For Diophantus, the “something” had to be positive, so the result
could never equal the smaller number, 4.

3. Here are some possible answers. Students may have other good suggestions.

• Temperature. −5◦ means 5◦ below zero.
• Money (or accounting). −$10 means a debt of $10.
• Sound balance (in car radios, etc). “−2 T” means 2 steps below balance

in the treble (high) range.
• Racing times (in sports). −1.2 sec. means 1.2 seconds less than the

previous best time, for example.
• Stock quotes (in newspapers or on TV). −.02 means that the stock price

has dropped by 2 cents.

4. (a) Students may express this in different ways. The basic idea is that a
negative number and its positive counterpart add up to 0, so they “cancel
each other out” additively. For instance, −2 + 2 = 0.

(b) 5 is the opposite of −5 (in this sense), but not of −3, because −5+5 = 0
but −3 + 5 6= 0. (The wording here also gently suggests the symmetry of
this relationship: 5 and −5 are inverses of each other.)

5. There is no single “right answer” here. Look for some visual representation
of a negative number and its positive counterpart being on opposite sides of 0
and equidistant from it.

6. This is from the 1728 English translation, quoted on p. 192 of Symbols, Im-
possible Numbers, and Geometric Entanglements: British Algebra Through
the Commentaries on Newton’s Universal Arithmetick, by Helena M. Pycior
(Cambridge University Press, 1997).

(a) positive (b) less than zero

7. This question gets at a fundamental idea, which is called for in part (e). The
earlier parts lead students to think about this general principle by a series of
simple examples, the last of which may cause some students a bit of trouble.

(a) 4 (b) −4 (c) −4 (d) −6
(e) Students who answer parts (a)–(d) correctly still may not be able to ar-

ticulate a general principle here. Stated informally, the idea is this: A
first number is less than a second if you have to add a positive amount
to the first one to get the second. In mathematicians’ language and no-
tation, a < b if a + p = b for some positive number p.
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This principle (it’s actually the definition of “less than”) orders the
negative numbers in a way that is consistent with the arithmetic of posi-
tive numbers. In particular, it explains the answer to part (d): −6 < −4
because −6 + 2 = −4.

(f) −10 < −7 < −4 < −3 < −1 < 0 < 2 < 3 < 5 < 8 < 10

8. This quote is from pp. 4–5 of the 1984 Springer-Verlag edition
of Leonhard Euler’s Elements of Algebra. It is noteworthy
that even as late as 1770, about the time of the American
Revolution, the most prominent mathematician in Europe
felt it necessary to explain what negative numbers mean.
These simple sums reinforce this common-sense interpreta-
tion of negative numbers.

(a) −35 + 35 = 0

(c) −30 + 10 = −20

(e) 22 + (−40) = −18

(b) −12 + 20 = 8

(d) 14 + (−9) = 5

(f) −25 + (−50) = −75

Sheet 4-2: Adding & Subtracting Negative Numbers

• Main Feature •
Rules for + and − with negatives

This activity sheet and the next highlight reasoning and sense making at its best.
If negatives are to be accepted as legitimate numbers, then the rules of positive-
number arithmetic must be extended to them in some consistent way. That is, we
must choose how to define +, −, ×, and ÷ on negative numbers so that the most
important properties of whole-number arithmetic are carried over.

The easiest operation to extend is addition. Simple, common-sense examples
should enable students to formulate their own rules for this, first in words and
then in symbols. Subtraction is the natural next step. It is also a common-sense
extension. The questions on this sheet proceed from example to verbal rule to
symbolic rule, thereby giving students a little taste of using symbols as convenient
abbreviations for their ideas. The final step for each operation asks students to
model some real-world situations with the rules they set up.
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Solutions

1. (a) (−7) + (−3) = −10 (b) 7 + (−3) = 4 (c) (−7) + 3 = −4

(d) (−6.5) + (−2) = −8.5 (e) 6.5 + (−2) = 4.5 (f) (−6.5) + 2 = −4.5

2. Here are some typical answers that capture the right ideas.

(d) If I borrow $6.50 and then borrow $2 more, I owe $8.50 altogether.

(e) If I have $6.50 and pay a $2 debt, I have $4.50 left.

(f) If I owe someone $6.50 and pay them only $2, I still owe $4.50.

3. Here are some typical answers. This question gets at the use of
negatives to indicate direction along a line or linear scale.

(a) If it is 7◦ below zero and gets 3◦ colder, it will be 10◦ below zero.

(b) If it is 7◦ above zero and gets 3◦ colder, it will be 4◦ above zero.

(c) If it is 7◦ below zero and gets 3◦ warmer, it will be 4◦ below zero.

4. The wording here is less important than the ideas. The next question uses
symbols to sharpen the meaning. These are the ideas:

If both numbers are negative, add their values (meaning, of course,
their absolute values) and make the sum negative.

If one number is negative and the other is positive, the difference of
their values is the value of the sum. That sum is positive or negative,
depending on which of the original numbers has the larger value.

5. You might have to help your students see how these symbols capture the ideas
of #4. The patterns match exactly the examples in #1. Because smaller must
be subtracted from larger, b− a cannot be used here.

(−a) + (−b) = −(a + b) a + (−b) = a − b (−a) + b = −(a − b)

6. If you have already taught your students rules about changing signs when
adding or subtracting, you might point out how these results conform to them.

(a) (−5)− (−2) = −3 because (−3) + (−2) = −5

(b) 5− (−2) = 7 because 7 + (−2) = 5

(c) (−5)− 2 = −7 because (−7) + 2 = −5

7. These questions connect the arithmetic to everyday life and to its historical
roots. As before, student wording may vary, but the ideas should be these.

(a) If I owe $5 and pay back $2, then I owe only $3.

(b) (This one is a bit tricky.) I have $5 and have borrowed
$2 more. If that $2 debt is forgiven, I now have $7.
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(c) I owe $5 and spend $2 more on my debit card. Now I owe $7.

8. The patterns match exactly the examples in #6. Again, because smaller must
be subtracted from larger, b− a cannot be used here.

(−a)− (−b) = −(a − b) a − (−b) = a + b (−a) − b = −(a + b)

9. There is more than one correct way to do these. Students should be able to
explain why their answers make sense.

(a) (−$600) + $200 = −$400 or (−$600)− (−$200) = −$400

(b) (−5◦) − 12◦ = −17◦ or (−5◦) + (−12◦) = −17◦

(c) 8 + (−2.5) = 5.5 (million dollars)

Sheet 4-3: Multiplying & Dividing Negative Numbers

• Main Feature •
Rules for × and ÷ with negatives

The most difficult idea here is the fact that the product of two negatives is
positive. Students often are confused about this. A main purpose of these activities
is to give them a common-sense rationale, so that they do not have to trust blindly
in a memorized fact (which sometimes is misremembered).

We approach this idea by looking at the most natural ways to preserve and
extend the essential properties of whole-number multiplication. Putting ourselves
in Brahmagupta’s shoes, we first must decide what properties are important to
preserve, and then define multiplication of negative numbers to do that.

In other words, we get to make up the rules here! These “negative numbers” are
new things that have been dumped into our number system. We have to tell the
multiplication of that system how to handle these new things. We can do that in
any way we please, but if we don’t choose wisely, we may foul up some very useful
properties of positive-number multiplication. The questions of this activity sheet
help students to identify such properties and see how their patterns suggest how to
extend multiplication to negative numbers.

Solutions

1. This question treats the product of a positive and a negative as repeated
addition of the negative number, using the idea of multiple debts. Part (b)
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also illustrates how multiplication remains commutative. If you are teaching
your students that terminology, this is a natural place to bring it up.

(a) $40 because 8 × $5 = $40

(b) $150; yes; 30 ×−$5 = 5 × −$30 = −$150

2. These parts, which should be done without a calculator,
also provide some easy mental arithmetic practice.

(a) −50 (b) −50 (c)−56 (d) −72

(e) −8.6 (f) −1.1 (g)−0.9 (h) −7.07

3. Negative. This rule can be stated more succinctly as “The product of a positive
number and a negative number is negative” if students automatically associate
the term product with multiplication. However, some students may not make
that connection easily yet.

4. This pattern is the key to defining the product of two negatives. Help students
to focus on the fact that each time the multiplier decreases by 1, the product
increases by 6. As the multiplier goes from 1 to 0 to −1, the product goes
from negative to 0 to positive.

(a) 5× (−6) = −30; 4 × (−6) = −24; 3 × (−6) = −18; 2 × (−6) = −12

As the first number gets smaller (by 1), the product gets larger (by 6).
(Student wording may vary, but this is the idea that it should reflect.)

(b) 1× (−6) = −6; 0 × (−6) = 0; (−1) × (−6) = 6; (−2) × (−6) = 12

5. 4×(−3) = −12; 3×(−3) = −9; 2×(−3) = −6; 1×(−3) = −3; 0×(−3) = 0;

(−1)× (−3) = 3; (−2) × (−3) = 6; (−3) × (−3) = 9; (−4)× (−3) = 12

6. Students need to start by getting the first answer correct: (−7) × 4 = −28.
Now, if (−7) × (−4) = −28, too, then (−7) × 4 = (−7) × (−4). But then
cancelling the common factor (−7) leaves 4 = −4, which is nonsense. So the
correct answer to the second question must be positive; (−7)× (−4) = 28.

Sometimes students have trouble imagining a real-world illustration of the fact
that the product of two negatives is positive. Here is a simple one.7

Pedro is a home-video buff, and his neighbor
Sam has a swimming pool. When Sam fills his
pool, the water rises at the rate of 2 inches per
minute. Pedro videotapes the rising water.

7Adapted from page 293 of The Mathematics of the Elementary Grades by William P. Berlinghoff
and Robert M. Washburn. New York: Ardsley House, 1990.
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When he runs the tape forward for 3 minutes,
he sees the water rising 6 inches. That is,
(+2) × (+3) = +6. When he runs the tape
backwards for 3 minutes, he sees the water
dropping 6 inches. That is, (+2)×(−3) = −6.

When Sam drains his pool, the water drops at the rate of 2 inches
per minute. Pedro videotapes this, too, and when he runs the tape
forward for 3 minutes, he sees the water dropping 6 inches. That is,
(−2)× (+3) = −6. When he runs the tape backwards for 3 minutes,
he sees the water rising 6 inches. That is, (−2)× (−3) = +6.

7. For parts (d) - (g), students should think of forming the products two numbers
at a time. (Since multiplication is associative and commutative, it doesn’t
matter which two numbers they choose first.)
(a) positive (b) negative (c) positive (d) positive

(e) negative (f) positive (g) negative

8. This question and the next look briefly at division of signed numbers, linking
their rules back to multiplication. Division is revisited in the next activity
sheet, which looks at fractions with signed numerators and denominators.

(a) (−20)÷ 5 = −4 Check: (−4) × 5 = −20

(b) (−18) ÷ (−6) = 3 Check: 3 × (−6) = −18

(c) 24 ÷ (−4) = −6 Check: (−6) × (−4) = 24

9. (a) negative (b) negative (c) positive. It might help your students to think
about the sign rules for multiplying or dividing two signed numbers this way:

If the signs are different, the result is negative.
If the signs are the same, the result is positive.

Sheet 4-4: Fitting In

• Main Feature •
Understanding rules for negatives

This activity sheet begins by looking at a historical distinction that we have
only hinted at up to now. European mathematicians of the late Middle Ages and
the Renaissance learned the rules for the arithmetic of signed numbers, but they
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used them only as formal manipulations for working with algebraic expressions for
positive quantities. To be able to multiply (x−2)(x−4) and get the correct answer,
for instance, we need to know that −2 times −4 is 8.

The mathematicians of those centuries believed firmly that
only positive numbers were legitimate. They would only consider
(x− 2)(x− 4) for values of x that were bigger than 4. Thus, the
rules were understood, but were thought of as merely formal.
When the idea of “negative numbers” as stand-alone objects was
first considered, there was a lot of confusion about how to deal
with them. Some of this confusion centered on ratios involving
negative numbers, which leads us to examine the roles of signed
numerators and denominators.

The pedagogical issue here is that the routine ways in which we manipulate
signs conceal some potential confusions that took early mathematicians a long time
to sort out. Thus, it is not surprising that they might raise similar difficulties for
today’s students, unless they are explored and put to rest conceptually. Along the
way, students get to review some basic facts about negative numbers.

Solutions

1. This question lays the foundation for #2. Some students might need a little
help understanding the idea or equal ratios. We have avoided starting with
fractions because it is too easy for the formality to obscure the idea. If some
students don’t see that 4:6 and 6:9 represent the same ratio, you might ask
whether “2 out of every 3 people like peanut butter” and “4 out of every 6
people like peanut butter” say essentially the same thing.

(a) The smallest three are 6 : 9, 8 : 12, and 10 : 15, but there are infinitely
many other correct answers.

(b) 5 : 8 :: 15 : 24 1 : 4 :: 3 : 12 2 : 5 :: 8 : 20

(c)
5
8

=
15
24

1
4

=
3
12

2
5

=
8
20

(d) Less. This sets up the issue in #2.

2. This question describes a real objection to negatives stated by Antoine Arnauld
(1612–1694), a prominent French philosopher, theologian, and mathematician.

(a) This part recalls a principle from sheet #4-1: A first number is less than
a second if some positive number added to the first gives you the second.
(We state this algebraically as a < b if there is some c > 0 such that
a + c = b. But students don’t need this formality unless you’re trying
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to teach them how to read algebraic symbolism.) In this case, −1 < 1
because −1 + 2 = 1.

(b) This part recalls a principle from sheet #4-3: When multiplying or di-
viding two numbers with different signs, the result is negative, regardless
of order. Therefore, 1 ÷ (−1) = (−1) ÷ 1 = −1.

(c) 1 : −1 :: −1 : 1

(d) By 2(a), −1 < 1. By 2(b), 1 : −1 :: −1 : 1; division represents the ratios.
So larger is to smaller as smaller is to larger. But this makes no sense in
terms of proportion. (See #1, for example.)

(e) This is an open-ended opinion question. Responses will depend heavily on
the students’ age and maturity level. In most cases, this question is best
used for class discussion. Here is the underlying idea. When the num-
ber system is expanded to include negative numbers, some properties of
positive numbers may not extend well, if at all. In deciding how the arith-
metic of negative numbers “ought to work,” we may
have to discard some properties in favor of others.
In this case, the idea that division represents propor-
tionality does not extend well to negative numbers.
We should use it only for positive numbers, because
the law of signs for division is too closely tied to the
logic of arithmetic to discard.

3. 17th century mathematicians were struggling with how to fit negative num-
bers into arithmetic without introducing inconsistencies. This paradoxical
argument appears in John Wallis’s Arithmetica Infinitorum of 1655. Some
parts of this question are pretty sophisticated, but students should be able to
see the main ideas. How much precision and clarity you should expect in re-
sponses depends heavily on the level and background of your students. Don’t
expect too much; these are difficult ideas.

(a) 3; 30; 300; 3000; 30,000; 300,000; 3,000,000

(b) The values of the fractions are getting larger and larger. They are “ap-
proaching infinity,” so to speak.

(c) He would have said that it is infinite. By the pattern above, the closer
the denominator gets to 0, the larger the number is. The “limiting case”
is that the denominator is 0, so the value of that fraction must be greater
than any finite number. (Don’t worry too much about precise wording
here, as long as students see the point of the pattern.)

(d) Yes, −1 < 0 (because −1 + 1 = 0 and 1 is positive).
3
−1

>
3
0
. By the

pattern above, as the denominator gets smaller, the fraction gets bigger.
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(e) Yes.
3
−1

=
−3
1

(by the rule of signs for division) and any number divided

by 1 is itself.

(f) This asks students to organize their thoughts about the preceding parts
and put them into some clear, logical order. As the denominator get

smaller, the value of a fraction with numerator 3 gets larger, until
3
0

= ∞.

But −1 < 0, so ∞ =
3
0

<
3
−1

=
−3
1

= −3; that is, ∞ < −3.

(g) This part asks students to acknowledge that the example is typical, not
special in any way. Yes, this argument can be used for any negative
number, say −n, because the same patterns and reasoning would lead to
n

0
= ∞ and

n

−1
= −n.

4. This makes for a good class discussion. It is not an easy question! If it were,
Wallis would never have posed his paradox in the first place; he wasn’t stupid.
However, he was writing at a time about a generation before Newton and
Leibniz proposed the beginnings of calculus, a time when “infinite quantities”
or limiting arguments were not well understood.

Wallis’s argument exemplifies the danger of treating infinity or something
divided by 0 as if it were a number. The whole argument rests on the assump-
tion that the pattern of smaller denominators yielding larger fractions “passes
through” 0 and extends to negatives as numbers smaller than 0. But there is
no reason to require that, particularly if it conflicts with the more basic rules
for signed numbers.

Sheet 4-5: Powers and (Sometimes) Roots

• Main Feature •
Computing powers of signed numbers

The questions on this sheet give students practice with exponents. The first
three questions establish the principle that even powers of negative numbers are
positive and odd powers are negative.

Solutions

1. (a) 34 = 3 · 3 · 3 · 3 = 81
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(b) (−7)3 = (−7) · (−7) · (−7) = −343

(c) (−6)2 = (−6) · (−6) = 36

(d) (−2)6 = (−2) · (−2) · (−2) · (−2) · (−2) · (−2) = 64

(e) (−2)5 = (−2) · (−2) · (−2) · (−2) · (−2) = −32

(f) (−5)4 = (−5) · (−5) · (−5) · (−5) = −625

2. This question asks students to recognize and extend the pattern of #1.

(a) positive (b) negative (c) negative (d) positive

(e) positive (f) negative

3. Student explanations may be phrased in different ways, but the basic idea is
this: Think of a repeated product of a negative number in pairs of factors.
The product of each pair is positive. (Students have seen this before.) If there
are an even number of factors, they all can be paired up, so the final product
must be positive. If there are an odd number of factors, all but one can be
paired up. The product of the pairs is positive, and multiplying that by the
remaining negative factor yields a negative final product.

4. This is a routine exercise in finding easy square roots. The question is stated in
equation form to give students a little practice in understanding the meaning of
algebraic notation. Parts (d) – (f) provide a little extra practice with decimals.

(a) 2 or −2 (b) 5 or −5 (c) 6 or −6

(d) 0.5 or −0.5 (e) 0.3 or −0.3 (f) 0.01 or −0.01

Placing negatives on a number line was not obvious in the 16th and 17th cen-
turies. For instance, René Descartes’s coordinate system for the plane did not use
negative numbers in the way that the familiar Cartesian coordinate system (named
for him) does now. His coordinate axis — he used only one fixed axis — was for
positive numbers only. The next activity gives students a visual sense of the relative
positions of positive and negative square roots, as well as providing a little practice
in common-sense approximation.

5. (a) 25, 36, 49, 64, 81, 100, 121, 144

(b) The sequence along the line should look like this:

−6 < −
√

30 < −5 < −
√

19 < −4 < −
√

11 < −3 < −
√

7 < −2 < −
√

3 <

−1 < 0 < 1 <
√

3 < 2 <
√

7 < 3 <
√

11 < 4 <
√

19 < 5 <
√

30 < 6

6. This part sets up the next one. The idea here is that the square of any square
root, positive or negative, is the number under the radical sign.

(
√

6)2 = 6 (−
√

6)2 = 6 (
√
−6)2 = −6 (

√
a)2 = a
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7. The square root of a number times itself should equal the number. But any
positive number times itself must be positive and any negative number times
itself must be positive.

8. The names Descartes gave to different kinds of numbers are still used, despite
their misleading implications. Real numbers represent all the points on a num-
ber line — positive, negative, and zero. Imaginary numbers (which are just as
authentic as real numbers)8 are the even roots of negatives and their products
with reals. Complex numbers are sums of real and imaginary numbers.

(a) These depend on recalling that the product of two negatives is positive.

(
√
−1)4 = (

√
−1 ·

√
−1) · (

√
−1 ·

√
−1) = (−1) · (−1) = 1

(−
√
−1)4 = ((−

√
−1) · (−

√
−1)) · ((−

√
−1) · (−

√
−1)) = (−1) · (−1) = 1

(b)
√
−3 and −

√
−3

8Alternatively, you could say that all numbers are imaginary because they are abstractions,
rather than concrete objects.
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Activity 1-1

Egyptian Hieroglyphics

© 2009  William P. Berlinghoff & Fernando Q. Gouvêa  page 1 of 2

Nearly 4000 years ago, the ancient Egyptians wrote with
picture symbols called hieroglyphics (“hy-row-gliff-ix”).
When they carved numbers on monuments and other
important things, they had a different picture for each
power of ten:

They used as many copies of a symbol as they needed for a number, but never
more than nine of any one. (Why not?)

Their system did not use place value; the symbols meant the same thing in any
order.  For example, both                                              stand for 124.

1. Edgar the Explorer found these numerals carved into a stone
monument.  What numbers do they stand for?

2. Write each number as an Egyptian numeral in two different ways.

(a) 535  ___________________  or  ___________________

(b) 241,367  ______________________  or  _______________________

(c) 1,000,003  _____________________  or _______________________

3.  Three of these five numerals stand for the same number:

(a)                                          (b)                                        (c)

                      (d)                                      (e)

Which ones are they? ______________  What is that number? ___________

What are the other two numbers?  ____________ and ____________

(a)                           ____________________

(b)                             ____________________

(c)                                                ____________________
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4.  Most Egyptians used an abacus or a counting board for
arithmetic because even simple addition and subtraction
were not easy in their system.  To see how this is so, do
each of the following calculations without converting to
our usual numeration system.

Egyptian Hieroglyphics

Now convert these questions and your answers to our system.
Did you get them right?

(a) __________ + __________ = __________

(b) __________ + __________ = __________

(c) __________ – __________ = __________

?

(c)  Subtract                                 from

5.  A carving on the tomb of King Nevvawaz says
that he had                                    soldiers.  For
each soldier, the king had         gold pieces put
in his tomb as a tribute to the sun god.  The
total number of gold pieces was carved there,
too, but it has worn away.  How many gold
pieces were put in the tomb?

What is the hieroglyphic numeral that wore away?

(a)  Add                                    and

(b)  Add                                                       and
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Activity 1-2

Babylonian Numerals
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Between 1900 and 1600 BCE, the Babylonians wrote
numbers by making marks in soft clay with a special kind of
stick.  The clay pieces were often small enough to fit in one
hand.  The stick made two different wedge-shaped marks
when pressed into the clay in two different ways, something
like this:

one ten

2.  Write each number in Babylonian.

(a)  17  ___________________

(b)  40  ___________________

(c)  53  ___________________

For 60 to 3599, they put a second group of these symbols to the left of the
first one, separated by a space. The value of the whole thing was the value of
second group multiplied by 60 and added to the value of the first group.  For
instance,

3.  What are these numbers?

(a)                  _____    (b)                   _____    (c)                    _____

4.  Write each number in Babylonian.

(a)  125  ___________________

(b)  792  ___________________

(c)  3154  ___________________

When the sun hardened the clay, these tablets became permanent records.
Thousands of them still exist in museums around the world, nearly 4000 years
after they were made.

To write the numbers from 1 to 59, they put together ones and tens.  For
instance, twenty-three was            .

1.  What are these numbers?

(a)         _____   (b)         _____   (c)                  _____

is 2·60 + 12 = 132.
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Babylonian Numerals

5.  In our notation, how much is 602? ________  How much is 603? ___________

Numbers from 3600 on were written by using more groups of the two wedge
shapes farther to the left, multiplied by 602, 603, and so on.

When writing numbers that used lots of wedges, the
Babylonians often put them very close to one another,
sometimes overlapping, as in the examples on the left
and right. For easier reading, we have put all the wedges
for a numeral on a single line and we have made the
ones wedge a little simpler.

fifteen thirty-eight

7.  Write each number in Babylonian.

(a)  50,000 ____________________  (b)  72,723 _______________________

The Babylonians' place-value system let them write large numbers easily with
only two symbols.  But it had one big flaw: There was no way to show that a place
had been skipped!  For instance, to write 60 you need a    in the 60s place and
nothing in the 1s place.  But they had no symbol for nothing!  So    could mean 1
or 60 or 3600 or something even bigger.  The only way to know was to figure out
what made sense for the situation.

A HAND TABLET

6.  Explain how 7883 is                             .

8.  A clay tablet says that the total number of some things is                , but the part
that says what is being counted is broken off.

If this is a shepherd counting his sheep, what number is it likely to be?_______

If this is King Hammurabi counting his soldiers, what numbers are more likely?
Give at least two.

9.  This is an example from an actual Babylonian tablet,
copied here.  The symbols in the upper left quadrant
say that            with        is               , and this answer
combined with        is                  .  To make sense of
this, you need to know how the numbers are being
combined and which place values have been skipped.
In both cases the numbers are being multiplied; which
place values have been skipped?  Explain.
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Activity 1-3

Mayan Numerals
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Halfway around the world from the Babylonians and Egyptians
lived a people called the Maya (“mī-yuh”).  They lived in Central
America, on and near the Yucatan Peninsula, now part of southern
Mexico and the countries of Belize, Guatemala, and Honduras.
Between 1500 b.c. and 300 a.d. the Maya developed an advanced
civilization, including a written language.  By about 300 b.c. they
had a place-value system for writing numbers that used two basic
symbols, a dot “ ” for one and a bar “       ” for five.

1.  Here are the Mayan numerals for 1 through 19.  Fill in the missing entries.

To write larger numbers, the Maya used these basic symbols as their “digits.”
They wrote the symbols vertically.  Each digit was multiplied by an increasing
place-value amount, from bottom to top.  The lowest place value was 1; the next
was 20; the third was 18 × 20 (surprise!); the fourth was 18 × 202.  From there on,
each place value was 18 times the next power of 20.

2.  Explain why 948 is        .

3.  What are these numbers?

(a)          ______   (b)          ________   (c)         ___________

4.  How would a Mayan write these numbers?

(a)  33                       (b)  405                     (c)  36,842

Unlike the Babylonians, the Maya used a place-holder symbol to show
a skipped position.  It was an oval that looked something like this:

5.  What are these numbers?

(a)         ______   (b)         ________   (c)         __________
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Mayan Numerals

6.  How would a Mayan student write these numbers?

(a)  20                   (b)  200                   (c)  735                  (d)  7350

7.  How would a Mayan multiply each of these one-place Mayan numerals by 10
and by 20?  Try it.

Numeral:

× 10

× 20

8.  (a)  What patterns do you see in the table for #7?

(b)  Do your patterns work for two-place numerals?  If so, explain why.  If not,
give examples that do not work.

9.  How can you multiply        by 20 and by 400
without converting to
our system?  Do it.  Then check by writing
the numbers in our system.

by 20: by 400:

_________     _________     _________
  number × 20 × 400

10.  Why should         and          be the same number?
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Activity 1-4

Roman Numerals
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About 2000 years ago, from the first century BCE to the fifth
century CE, the Romans ruled most of  civilized Europe.  Their
system for writing numbers was used throughout Europe for
many centuries after that.

Roman numeration is additive.  It does not use place value,
with one exception.  The table at right shows its basic symbols
and their values.  To get the value of a Roman numeral, you
just add up the values of its basic symbols, like this:

CLXXII = 100 + 50 + 10 + 10 + 1 + 1 = 172

Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

To write larger numbers, the  Romans put a bar over any
symbol they wanted to multiply by 1000.  For instance,

 V = 5000  and VIICLX = 7000 + 100 + 50 + 10 = 7160.

1.  (a) XXVIII = _____   (b) DCCCLXI = ______   (c) MMCXXXVII = _________

(d) VMCCCXIII = ____________   (e) MCCDLXXX = ________________

2.  Write the Roman numeral for each number.

(a)  37 = __________   (b)  256 = ____________   (c)  2011 = ____________

(d)  20,363 = ______________   (e)  2,000,001 = ______________

To avoid more than three copies of the same symbol in a
numeral,the Romans used a subtraction rule.  If a basic symbol
had a smaller value than the next one to its right, the value of the
pair was the larger one minus the smaller one.  For instance,
IV = 5 – 1 = 4.  To make sure that there was only one way to
write a number, only power-of-ten symbols could be subtracted,
and they could only be paired with the next two larger values:

I could be paired with V or X, but not with L, C, D, or M.
X could be paired with L or C, but not with D or M.
C could be paired only with D or M.

3.  (a) CXLIV = ____   (b) MCMXCIX = ______   (c) MMMCDLXXIV = _______

4.  Write each number in Roman numerals.   (a)  324 ____________

(b)  489 _______________   (c)  2,396,944 ___________________________
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Roman Numerals

MCMIV

Roman numerals are still used today.  They are legal
for use in copyright notices and often appear that way in
movies.  If you look at the cornerstone of an important
building—a library, a university hall, a state capitol—you
will probably see the year it was built engraved in Roman
numerals.  You can find examples in other places, too, if
you look hard enough.

5.  (a)  What is the date on the cornerstone shown in the drawing above? _______

(b)  The Roman numeral on a courthouse in our town
says that it was built in 1859.  What is that numeral?  _________________

6.  (a)  The copyright notice on the movie Charade
says MCMLXIII.  What year is that?           _______

(b)  The copyright for Charlie Chan’s Secret
says MCMXXXV.  In what year was it filmed? ______

(c) The Last Time I Saw Paris  was filmed in 1954, but its
copyright notice says MCMXLIV.  What’s wrong?

 _________________________________________________________

(d)  The copyright notice on the Australian film Mad Dog Morgan says
MCMDXXVI.  What’s wrong?

 _________________________________________________________

It is not easy to do arithmetic with Roman numerals.  When people
wrote numbers this way, the calculated with an abacus or a counting
board.  Do the following calculations without translating them into our
usual system.  (You’ll need some scrap paper.)  Be prepared to
explain how you did them.  Then chack your answers by translating.

7.  Add DCCCXLVIII and CDXXXIV.

__________________________

8.  Subtract DCCCXLVII from MCCLXVI.

__________________________

7.  Multiply CCLXXXIV by XVI.

__________________________
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Activity 1-5

Hindu-Arabic Numerals
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To write numbers today, we use the Hindu-Arabic system.
It was invented by the Hindus in India about 600 CE.  The
Arabs learned it from them in the 7th and 8th centuries.  The
Europeans learned it from the Arabs several centuries later.
It replaced the Roman system because it was easier to use.

The Hindu-Arabic system uses place value based on powers of ten:

1,  10,  100 = 102,  1000 = 103,  10,000 = 104, ....
Its basic symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.  The chart below shows basic

symbols of the other systems you have learned about.

Hindu-Arabic 0 1 5 10 50 100 500 1000

Egyptian

Babylonian

Mayan

Roman I V X L C D M

1.  Fill in the following table so that all the numerals in each row represent the
same number.

Egyptian Babylonian Mayan Roman Hindu-
Arabic

620

MCCCXX
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Hindu-Arabic Numerals

2.  Rank the five systems of question 1 in order, from “easiest
to use” to “hardest to use, “ based on your own opinions.
Be prepared to give reasons for your rankings.

(1)  __________________________ (easiest)

(2)  __________________________

(3)  __________________________

(4)  __________________________

(5)  __________________________ (hardest)

3.  Arrange the letters for the following events in chronological order on the line
below, from earliest to most recent.

(a)  The Roman Republic was founded.

(b)  The Egyptians began using hieroglyphic numerals.

(c)  Rome fell to Odoacer, ending the Roman Empire.

(d)  The Babylonians began using wedge-shaped numerals.

(e)  Columbus landed in America.

(f)  The first universities were founded in Europe.

(g)  Alexander the Great conquered much of the Near East.

(h)  Charlemagne ruled the Frankish Empire in Europe.

(i)  The first European printing press was put into use.

(j)  The Arabs formed the Hindu-Arabic numeration system.

earliest most recent
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Activity 2-1
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Most people think of zero as “nothing.”  But it’s not.  Zero is a
very important something, not just in mathematics but whenever
people use numbers.  It started out as a place holder, a notice that
a particular location was vacant.  Even then it was very important.

A system for writing numbers is called a numeration system, and the written
form of a number is called a numeral.  If the value of a symbol in a numeral
depends on where it is, the system uses place value.  In our usual system, for
instance, 131 and 311 stand for different numbers because the 3 means 3 tens in
the first numeral, but it means 3 hundreds in the second.

The earliest place-value system we know about was used
by the Babylonians almost 4000 years ago.  It was based on
multiplying by 60.  They had wedge-shaped symbols for the
numbers one and ten, something like the ones shown here.

1.  What does the 5 mean in each of these numerals?

(a)  251 __________  (b)  3615 __________  (c)  5432 __________

one

ten

To write the numbers from 1 to 59, they just put together ones and tens.  For
instance, twenty-three was           .

2.  What are these numbers?

(a)              ______   (b)                ______   (c)              ______

For numbers from 60 on, they put more groups of the two
basic symbols to the left. The next group was multiplied by
60, the one after that by 602, and so on.  For instance,

602 = 3600

603 = 216,000

604 = 12,960,000

. .
 .meant  2·602 + 11·60 + 13 = 7873.

But there was a problem. They had no way to show when a place was skipped.
For example,            could mean 2·60 + 1 or 2·602 + 1 or 2·602 + 1·60.

3.  Interpret                   in three different ways. Calculate the numbers.

(a) _________________   (b) _________________   (c) __________________

In the 19th century, archaeologists found hundreds of ancient Babylonian clay
tablets.  Many of them appeared to be using these wedge-shaped numerals for
arithmetic. (Activity sheet 1-2 shows a drawing of one of these tablets.)  But the
calculations did not always seem to make sense, until people realized that
sometimes places were being skipped!
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The next few problems will give you some idea of what the
archaeologists had to deal with.  They are calculations written
with our usual numerals, but with the zero place-holders missing.
Turn each one into a correct statement by putting zeros in the
right places.  For example:

1  2  +  1  3   =   2 2 3

is correct if you put in zeros like this:

120 + 103 = 223.

4.  Now it’s your turn.  Try these:

(a)  2  3   +   1  7   =   3  1   _______________________________

(b)  2  3   –   1  7   =   1 2 3   ________________________________

(c)   2  3   +   1  7   =   2  2   _______________________________

(d)  5  5   +   5  5   =   1  5  5   _______________________________

(e)  5  5   +   5  5   =   6  5   _______________________________

(f)  5  5   –   5  5   =    4  5  in two different ways.

 ____________________________  &  _____________________________

???

5.  In these multiplication examples, the 4 stands for 4 ones.
Where are the missing zeros in the other numerals?

(a)  2  7  5 ×   4   =   8  3   ________________________

(b) 2  7  5 ×   4   =   1  8  2   _________________________

(c) 2  7  5 ×   4   =   8  2  8  2   __________________________

6.  There’s nothing special about using 0 for the place-holder symbol.  It’s just a
tradition that came from the original Hindu system.  We could use any other
symbol, such as #, for instance.  If we did, then 2#3 would mean 2 hundreds
and 3 ones.   What would each of these numerals mean?  (Write the place
values of your answers in words.)

(a)  7#  ___________________     (b)  4##  ________________________

(c)  5#6 ___________________    (d)  2#1#  ________________________
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3
2
1
?

The Hindus’ idea of a place holder was called sunya.  The Arabs
who learned the Hindu system in the 9th century called it sifr.  When
the Europeans learned it from the Arabs in the 12th century, they
Latinized the word in two different ways, cifra and zephirum.  These
became our English words cipher (“sy-fur”) and zero.

But the Indian mathematicians of the 9th century took a big step
forward that the Arabs didn’t see at the time.  They realized that,
just as 3 was an idea, whether it was counting cats or chickens or
countries, so 0 was an idea, even though it wasn’t counting anything.
That is,0 is not just a place holder, it’s a number.  This meant that they had to
decide how 0 should work when it is combined with other numbers by the
operations of arithmetic.

1.  (a)  If you add 0 to a number, what should the result be?  Why?

(b)  5 + 0 = ___     (c)  0 + 107 = _____     (d)  0 + 0 = ___

2.  (a)  Sometime around 850 CE, the Indian mathematician Māhavīra wrote that
0 subtracted from a number leaves the number unchanged.  Explain why
Māhavīra’s idea makes sense if you are counting cats (or anything else).

(b)  3 – 0 = ___     (c)  1907 – 0 = _____     (d)  0 – 0 = ___

(e)  Why do you think Māhavīra didn’t mention subtracting a number from 0?

____________________________________________________________

3.  Māhavīra also wrote that a number multiplied by 0 results in 0.

(a)  How does this fit in with the arithmetic of whole numbers?
(Think of 3 × 4 as 4 + 4 + 4, for instance.)

_______________________________________________

_______________________________________________

(b)  7 × 0 = ____     (c)  0 × 25 = ____     (d)  0 × 0 = ____

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + ... + 0 = __ ?
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4.  Māhavīra also claimed that a number divided by 0 remains unchanged.
However, about 1100 CE, the Indian mathematician Bhāskara said that
a number divided by 0 is an infinite quantity.

(a)  Explain how Māhavīra’s idea does not match the way division
works for other numbers.  (Think about 5 × (3 ÷ 5), for example.)

5.  Dividing a number by 0 and dividing 0 by a number
are two very different things.

(a) 0 ÷ 17 = ____  (If you chop 0 yards of rope into
               17 pieces, how big is each piece?)

(b) 0 ÷ 5 = ____     (c) 0 ÷ 83,496 = ____

(b)  Why was Bhāskara’s idea reasonable? ____________________________

____________________________________________________________

(c)  Suppose 7 ÷ 0 equals some very big number; we’ll call it B for “big.”  What
goes wrong?  (Think about how ÷ and × “undo” each other.)

____________________________________________________________

 ____________________________________________________________

____________________________________________________________

____________________________________________________________

37
 0

???

6.  (a)  In 75, what does the 5 mean? ____________________________________

(b) Write 75 and 73 as repeated products:  __________ and __________

(c)  If 75 × 73 = 7N, what is N? ___  Why? ______________________________

(d)  What should 75 × 70 be? ___ What should 70 be? ___ Why?____________

____________________________________________________________

7.  Did you get question 6(d)?  If you did, congratulations!  If not, don’t feel bad;
it’s not obvious.  Think about it this way:  A whole-number exponent counts
the number of repeated factors in a product.  In 6(c), the 73 says that 75 is
multiplied by 3 more 7’s.  In 75 × 70, the 70 says that 75 is multiplied by no
more 7’s. Therefore:
(a) 75 × 70 = ___ ?     (b)  So 70 = __ ?     (c)  20 = __ ?     (c)  5860 = __ ?

8.  True or False:  If a0 = b0, then a = b.  Explain:___________________________

______________________________________________________________
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2.  What can you say about numbers a and b in each case?

(a)  3a = 3b _________   (b)  47a = 47b _________   (c)  0a = 0b __________

1.  Can you find two nonzero numbers whose product is 0?  If so, do it.  If not,
explain why you think it can’t be done.

Question 1 points to an important fact:
If the product of two numbers is 0, then at least one of them must be 0.

3.  Use your answer to #1 to justify your answer to #2(a). ____________________

_______________________________________________________________

In the early 17th century, Thomas Harriot turned this fact into a
powerful tool for solving equations.  Harriot was a geographer,
a naturalist, and a mathematician.  In 1585 he was sent by Sir
Walter Raleigh to help found the first English colony in the New
World.  That colony was  on Roanoke Island,  in an area the

British called Virginia.  It did not survive, but some of Harriot’s
writings about it still exist.  He was its surveyor and its historian.
Harriot also wrote about algebra,  an important field of study in
17th-century England.  He was the first person to use a simple,
powerful principle that made solving polynomial equations much
easier than it had been up to then.

4.  Which state is Roanoke Island in today?  __________________________

5.  Rewrite each of these equations according to Harriot’s Principle.

(a) x2 + 3 = 4x   _______________________

(b)  2x3 – 6x + 3 =  4x2 + 2x – 9  ________________________

(c)  7x + 1 = 4x2 – x + 5  ________________________

6.  Use the “important fact” from question 1 to rewrite equations 5(b) and 5(c) so
that the leading coefficient (the coefficient of the highest-power term) is 1.

(5b) ________________________    (5c) __________________________

Harriot’s Principle:  Move all the terms of the equation to one side
of the equal sign, so that the equation has the form

[some polynomial] = 0.
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Suppose a and b are nonzero and a = b.
Multiply both sides by a:
Subtract b2 from both sides:
Factor both sides:
Divide by (a – b):
Substitute b for a: (They are equal.)
Divide by b:

                 a2 = ab
          a2 – b2 = ab – b
(a + b)(a – b) = b(a – b)
             a + b = b
                 2b = b

2 = 1

By the 16th century, European mathematicians knew a lot about factoring
polynomials. For example, they knew that x2 – 4x + 3 = (x – 3)(x – 1).  When
Harriot’s Principle told them that x2 + 3 = 4x was the same as x2 – 4x + 3 = 0,
they could immediately solve that equation. Do you see how?

7.  Solve x2 + 3 = 4x.  That is, find two numbers for x that make it a true statement.

Show how you did it. x = ___  or x = ___

______________________________________________________________

8.  Solve these equations.

(a)  0 = 2x2 + x – 15 = (2x – 5)(x + 3) x = ___ or ___

(b)  0 = 3x2 + 19x – 14 = (x + 7)(3x – 2) x = ___ or ___

In 1637 the French mathematician René Descartes
described a way to picture algebraic expressions by
graphing them on coordinate axes.  Using Harriot’s
Principle, the solutions to an equation can be
approximated by graphing without factoring.
For instance:
To solve x2 + 11 = 7x, first rewrite it as x2 – 7x + 11 = 0.
Now graph x2 – 7x + 11 = y.
The solutions are where the graph crosses the x-axis.

9.  The picture above is the graph of x2 – 7x + 11 = y.  Use it to approximate the
solutions to x2 + 11 = 7x.  Check by substituting into the original equation.
See if you can make the difference between the two sides less than 0.01.

x = _____; difference: _____ x = _____; difference: _____

10.  What’s wrong with this “proof” that 2 = 1?
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1.  Ahmose is having trouble with his homework.  His teacher asked him to fill in a
table for the first twelve multiples of the twelfth.  Can you help him?  His table
is on the scroll.  Next to it is a matching table with our modern fraction symbols.
Fill in both of them.

∩ІІ

ІІІІІІ

ІІІ ∩ІІ

(Remember: You can’t
use the same size part
more than once for
each number.)

?

2.  What sum of unit fractions would Ahmose need for each of these numbers?
Use our modern fraction symbols to write your answers.

(a)       = ____________________   (b)       = _________________________

(c)       = ____________________   (d)       = _________________________

11
16

4
7

13
27

23
50

They used only one copy of each size part in any single number.  For
example, they would call ⅜ “the fourth and the eighth.”

In the 17th century BCE, the Egyptians had a strange way of dealing
with fractions.  They worked only with “parts.”  We would call these unit
fractions, fractions with numerator 1.  For instance, “the eighth part” is ⅛.
To show that a symbol represented a part, they put a dot or an oval above
the symbol for the size, like this:

ten: ∩   the tenth: ∩         twelve: ∩ ІІ   the twelfth: ∩ ІІ



© 2010  William P. Berlinghoff & Fernando Q Gouvêa  page 2 of 2

Unit Fractions

3.  Alyssa the Explorer found
this papyrus scroll.  Help
her translate its numbers
and find a pattern that
connects them to each
other.

∩
ІІІІІ

ІІІІ ∩∩
ІІІ ∩ІІІІІ

ІІ
ІІ ∩
ІІ ІІІІІ
ІІ ІІІІ ∩∩
ІІ ІІІ ∩ІІІІІ

І

What pattern do you see?

_____________________________

_____________________________

_____________________________

4.  A lot of ancient Egyptian arithmetic was based on repeated doubling.
Doubling “parts” is not always easy.  Try these.  You may use modern
fraction symbols, but remember that the numerator can only be 1!

part × 2 × 4 × 8

1
28

1
18

1
13

1
16

5.  The opposite of doubling is halving.  Write half of each of these “parts.”

(a)         _______      (b)         _______      (c)          _______
1

16
1

15
1

350

6.  Why is it easy to divide a “part” by any whole number?
Give an example to illustrate your answer.

___________________________________________

___________________________________________

___________________________________________
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1.  What are these numbers?

(a)             _____   (b)              _____   (c)           _____

2.  Write each number in Babylonian.

(a)  13  _______   (b)  22  _______   (c)  50  ________

?

For 60 to 3599, they put a second group of symbols to the left of the first one.
The value of the whole thing was the value of second group multiplied by 60 and
added to the value of the first group. Numbers from 3600 on were written by using
more groups farther to the left, multiplied by 602, 603, and so on.  For instance,

4.  Write each number in Babylonian.

(a)  812  ___________   (b)  11,425  ______________

                  is 11·602 + 2·60 + 21 = 39,741.

3.  What are these numbers?

(a)              _______   (b)                         ___________

A small notation change will make it easier to see how the Babylonians wrote
numbers less than 1.  Instead of using their symbols for the numbers 1 through 59,
we’ll use our own, with commas to separate the groups.  For example, we will
write                 , which means 11·602 + 2·60 + 21, as 11, 2, 21.

5.  Write each of these Babylonian numerals using our symbols.  Then write it as a
sum of powers of 60, as in the example above.

(a)                               __________   ___________________________

(b)                               __________   ___________________________

(c)                               __________   ___________________________

Almost 4000 years ago the Babylonians wrote numbers using a place-value
system based on sixty.  They wrote in soft clay with a stick that made two different
wedge-shaped marks,     for one and     for ten.  To write the numbers from 1 to
59, they put together ones and tens.    For instance, thirty-two was          .

To write fractions, the Babylonians started with 60ths.  Nobody
knows for sure why their system is based on 60, but some historians
think it is related to their system of money:

60 shekels = 1 mina;  60 minas = 1 talent
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This is not very different from our own base-ten system for money:
10 pennies = 1 dime;  10 dimes = 1 dollar

One big advantage of using 60 is that it has a lot of factors (numbers that
divide it without remainder), so many different fractions can be expressed as
multiples of 1/60.

6.  List all the factors of 60. __________________________________________

Fractions were written by putting symbol groups of to the right of the ones
place, just as we do with decimals.  The first group was for 60ths, the next for
3600ths, etc. (If you think of the units as hours, then the first place to the right
would be minutes and the next would be seconds.)  For example,

7.  Explain the two examples above.  (Convert to fractions and simplify.)

______________________________________________________________

______________________________________________________________

8.  How would we write these numbers today?

(a)  1; 20  __________                     (b)  2; 30, 30  ____________

(c)  3; 24, 36  _____________         (d)  4; 1, 1, 1  ______________

A place-value system makes adding and subtracting fractions easy.  The
Babylonians just added the whole numbers place by place. If a sum was more
than 60, they “exchanged” it for a 1 in the next place to the left.  For example,

1; 45 + 1; 20 = 3; 5
This is just like “carrying” 10 when we add decimals in our system.

9.  (a)  Check the example above by converting it to common fractions.

__________________________________________________

(b)  Add 2; 40 and 3; 50 in the Babylonian system.  Then check by
converting to common fractions.

Sum: _________   Check: _____________________________

10. Do these without converting to common fractions.

(a)  2; 25, 17, 42  +  3; 40, 13, 50  =  ____________________

(b)  7; 33, 28, 44  +  3; 29, 10, 21  =  ____________________

(c)  8; 40, 29, 23  –  1; 35, 12, 15  =  ____________________

(d)  5; 21, 24, 17  –  4; 21, 30, 47  =  ____________________
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Today we describe the size of a piece of something by counting copies of a
single, small enough part.  That is, we choose a small part (a “unit part”) that can
be counted enough times to get exactly the amount we want.  Then two numbers
tell us the total amount: the size of the part, and the number of times we count it.

The size of the part is given by the denominator, which is Latin for “namer.”

The number of copies of that part is called the numerator, Latin for “counter.”

1.  Find an English word with the same root as denominator that means something

about naming. ____________________  Then find an English word with same

root as numerator that means something about counting. _________________

The earliest evidence of this approach to fractions comes from
about 100 BCE, in a Chinese manuscript called Nine Chapters on
the Mathematical Art.  Its notation for fractions is a lot like ours.
The one difference is that the Chinese did not use ”improper
fractions.”  Instead of     they would write 2  .7

3
1
3

2.  If you have     of a pizza, what is the size of the unit part? ____

How many copies of that part do you have? ____

If you double the denominator, how much pizza is that? ____

Is that more or less than     ? _______  Explain. ____________

__________________________________________________

3
8

3
8

3.  The denominator “names” the size of the equal pieces (the unit parts) by telling
you how many there are in one whole thing.  The more pieces there are, the
smaller each one is.  Put these fractions in size order, from smallest to largest:

1
9

_1_
256

_1
12

1
6

1
8

1
2

_1
64

1
3

____ < ____ < ____ < ____ < ____ < ____ < ____ < ____

Hindu manuscripts as early as the 7th century CE show fractions as one
number over another.  The size of the part was below the number of times it
was to be counted, but there was no line between them.  This form became
common in Europe a few centuries later.  The Arabs added a bar between
the top and bottom numbers sometime around the 12th century.

3
4
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4.  The numerator “counts” the number of equal pieces you have. If the pieces
are the same size, the more you have, the larger the number is.  Put these
fractions in size order, from smallest to largest:

1
9

7
9

2
9

8
9

5
9

4
9

____ < ____ < ____ < ____ < ____ < ____

5.  Circle the larger fraction in each pair.  Be prepared to justify your choices.

(a)

(d)

(g)

5
7

4
7

53
92

53
91

4
5

4
6

(b)

(e)

(h)

4
8

4
7

15
37

14
37

2
9

2
5

(c)

(f)

(i)

3
8

5
8

45
91

45
83

18
35

23
35

6.  You and three friends go out to share a large pizza.

(a)  You decide to share it equally.  What fraction will you have? _____

(b)  If the pizza is cut into 8 pieces, how many will you have? _____

(c)  If it is cut into 12 pieces, how many will you have? _____

(d)  If it is cut into 16 pieces, how many will you have? _____

(e)  Fill in the missing numerators:       =       =       =1
4

__
8

__
16

__
12

7.  Generalize the idea of the previous question to fill in the missing numerators.

(a)       =            (b)      =             (c)       =             (d)        =       =4
7 21

1
5 20  4

 9
12

2
3 15 20

When fractions have different numerators and denominators, it may be hard
to say which is larger.  That’s because different-size pieces are being counted.

For instance,     and        are easily compared using the same size pieces:

     =       and       =      , so        is        larger than    .

5
7

 8
11

5
7

 8
11

55
77

56
77

 8
11

 1
77

5
7

8.  Compare each pair of fractions as in the previous example.

(a)       =          and       =         , so          is           larger than          .

(b)       =          and       =         , so          is           larger than          .

4
7

5
9

5
6

 9
11
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All the usual rules for fraction arithmetic appear in the Nine Chapters:
how to reduce a fraction that is not in lowest terms, how to add fractions,
and how to multiply them.  For instance, this is their rule for addition:

Each numerator is multiplied by the denominators of the other
fractions.  Add them as the dividend, multiply the denominators
as the divisor.  Divide; if there is a remainder, let it be the
numerator and the divisor be the denominator.

3.  Use the Nine Chapters rule for addition to do these sums.  Show your work.

(a) + _________________________________________________

(b) +     +  ________________________________________________

(c) +     +     + ______________________________________________
1
3

2
3

3
5

1
2

4
5

7
8

3
4

5
8

1
6

2.  Write each of these sums as a number of copies of a single unit part.

(a)  a quarter and an eighth _______   (b)  a half and a third _________

(c)  a third and a quarter _________    (d)  a fourth and a fifth __________

(e) Can (a) – (d) each have more than one correct answer?______  Explain.

____________________________________________________________

Nine Chapters on the Mathematical Art, an ancient Chinese
text, shows that the Chinese of 100 BCE thought of a fraction as
some number of copies of a small part of a whole thing.  The
bottom number was the size of the part; the top number told
them how many copies to take.

The main idea of the Nine Chapters approach to fraction arithmetic is this:
Find a small enough part for all the fractions to be whole-number
multiples of it.  This turns any problem into a whole-number problem.

1.  (a)  To measure out     of a bushel of rice, how many equal parts of the bushel

should you make? ____  How many of them should you take? ____

(b)  If you separate the bushel into 10 equal parts and take 3 of them, what

fraction of it do you have?  _____  Is that more or less than    ? _______

How much more or less? _________________

3
5

3
5
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4.  How (if at all) is the Nine Chapters rule for addition different from the way you

usually add fractions? ____________________________________________

______________________________________________________________

The Nine Chapters also shows that the Chinese of 100 BCE knew how to
reduce fractions that are not in lowest terms and how to multiply fractions.

6.  (a) Write a rule for reducing a fraction that is not in lowest terms.

____________________________________________________________

(b)  Reduce each of your answers in #3 to lowest terms:

(3a) _____________     (3b) _____________     (3c) _____________

(c) Reduce to lowest terms:        = _____________         =  _____________54
90

462
495

7.  The Nine Chapters rule for multiplying two fractions is just like ours:
Multiply the numerators to get the numerator of the product;
multiply the denominators to get the denominator of the product .

Use it to find these products.  Show your work.

(a)              =  _______________     (b)              =   ___________________

(c)              =  _______________     (d)                 =  ___________________

5
8×6

7
7
9×11

12

8.  To divide, the Nine Chapters first finds a common part size (denominator) for
both fractions.  Then the answer is just the quotient of the numerators; e.g.,

(a)  Divide by the Nine Chapters  method:

                   ___________________                   ______________________

(b)  Now divide by the “invert and multiply” method.

                   ___________________                   ______________________

10
12

2
3

4
5÷ = 12

15
10
15

÷ =

5
8

3
7÷  3

10
4
9÷

5
8

3
7÷  3

10
4
9÷

5.  IBy replacing “Add” with “Subtract” in the Nine Chapters addition rule, you get
a rule for for subtraction.  Use it to answer these questions.  Show your work.

(a)      –     = _________________________________________

(b)      –     = _________________________________________

(c)      –     = _________________________________________

2
3

3
5

7
8

1
6

3
4

5
8

1
6×5

6
  3

 100×12
100
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The Latin word for “ten” is decem, so “decimals” are numerals
based on ten.  You already know how the decimal system works
for whole numbers.  Starting from units, each place to the left
goes up in value by a power of ten: tens, hundreds, thousands,
etc.  For instance, 456 is 6 units, 5 tens, and 4 hundreds.

Places to the right can be used in the same way.  The Chinese and the Arabs
knew this more than 1000 years ago.   But in Europe, the main source of our
mathematics, this system was not used for writing fractions until almost 100 years
after Columbus discovered America.  In his 1585 book called The Tenth, Simon
Stevin, a Flemish engineer, showed how writing fractions as
decimals allows them to be handled by the simpler processes
of whole number arithmetic.  The use of decimal fractions by
prominent scientists during the next few decades paved the
way for general acceptance of decimal arithmetic.

1.  Name the place values for the first three places to the right of the units place.

  units       ____________      _____________      _____________

2.  Write each decimal as a common fraction.  Then reduce it to lowest terms (if it
is not already in that form).

(a)  0.7  ____________________     (b)  0.75  ______________________

(c)  0.008  __________________     (d)  0.33   ______________________

(e)  2.12  ___________________     (f)  1.2525  _____________________

3.  Write as decimals without using a calculator.  (Stevin didn’t have one in 1585.)

(a)      = ______    (b)       = _______    (c)        = _______    (d)       = _______4
5

121
250

17
8

13
20

5
8

2
54.  (a)  Add:      +       = ___________________________ .  Now write these two

fractions as decimals and add again:  ______ + ______ = _________.

Circle the way that was easier for you:   fraction     decimal

(b)  Subtract:      –         =  _______________________ .  Now write these two

fractions as decimals and subtract again: ______ – ______ = _________.

Circle the way that was easier for you:   fraction     decimal

3
4

 72
125
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Decimals

(c)  Multiply: x       = __________________________ .  Now write these two

fractions as decimals and multiply again:  ______ x ______ = _________.

Circle the way that was easier for you:   fraction     decimal

(d)  Divide: ÷      =  ________________________ .  Now write these two

fractions as decimals and divide again: ______ – ______ = _________.

Circle the way that was easier for you:   fraction     decimal

3
8

2
5

7
8

 3
25

6.  People in 16th century England used many different units to measure
distances. This table shows how some of them are related to each other.

5.  (a)  Which of these decimals is larger, 0.37498 or 0.3761?  _______

(b)  How can you tell which of two decimals is larger? ___________________

___________________________________________________________

(c)  Use a calculator to help you order these fractions from smallest to largest.

_____ < _____ < _____ < _____ < _____ < _____ < _____ < _____

3
5

247
391

 83
137

11
17

16
25

5
8

2
3

613
942

Writing fractions as decimals was a big step forward.  It opened the
door to many powerful tools, including the metric system in the 18th
century and electronic calculators in the 20th century.  Calculators, in
turn, make it even easier to use fractions as decimals.

(a)  Fill in the bottom row with decimals for each fraction.  Round to
three places, if necessary.

(b)  Calculate the length of a mile in feet using your decimals and also
by using the common fractions.

      (Do your answers agree?         _____________       _____________
Should they?) by decimals  by common fractions

(c)  What fraction of a mile is the total of 2 furlongs, 4 chains, and 3 rods?

      ____________ mi.  How many feet is that?  ____________ ft.

furlong chain rod yard foot

1/8 mile 1/10 furlong 1/4 chain 2/11 rod 1/3 yard

0.125
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The Latin word for “hundred” is centum.  A penny is called a cent
because it’s a hundredth of a dollar.  Our word “percent” is a short form
of the Latin phrase per centum, meaning “for each hundred” or “out of
every hundred.” A 5 percent tax takes 5 cents out of every dollar.

1.  (a)  What is 6 percent of $2.00?  ________

(b)  What common fraction equals 7 percent?  _______

The symbol for percent evolved slowly over several centuries,
from “per 100” in the 1400s to “per ” by 1650, then simply to “   ,”

and finally to the % or % symbol we use today.

0
0

0
0%%

%%
%

2.  (a)  7% of 400 = _____     (b)  10% of 250 = _____     (c)  5% of 40 = _____

Europe of the 13th to 15th centuries gradually shifted from feudalism to more
widespread commerce.  Money became essential for doing business.  Of course,
there were no dollars and cents then. Countries and even cities developed their
own money types — francs in France, guldens in Germany, florins in Florence,
and so on. As money became more important, so did loans. Most loan payment
rates were stated per hundred of whatever the local currency was; that is, they
were stated as a per cent of the loan amount.

3.  Marco the Merchant borrowed 300 florins to invest in a trading
expedition to India.  He had to pay the lender 4% every month
until the ship returned two years later.

(a)  How much interest did he pay each month?____________

(b)  How much interest did he pay in all? ______________

4.  Write each of these percents as a common fraction in lowest terms.

(a)  25% = ________       (b)  50% = ________       (c)  20% = ________

(d)  15% = ________       (e)  33% = ________        (f)  75% = ________

5.  Decimals were not widely used in Europe until the 17th century, 150 years or
more after percents appeared in business.   They made working with percents
much easier.  Write each of these percents as a decimal.

(a)  25% = ________       (b)  12% = ________       (c)  3% = ________

(d)  86% = ________       (e)  33% = ________        (f)  5% = ________
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Percent

6.  When money is measured in dollars and cents, percents become even
easier to use.  1% of a dollar is a cent (a penny), so a percentage just tells
you how many pennies for each dollar.  What are each of these amounts?

(a)  1% of $13.00 = _______     (b)  5% of $12.00 = _______

(c)  40% of $32.00 = _______   (d)  18% of $2.50 = _______

7.  An easy way to calculate some percent of a number is to write the percent as a
decimal and translate “of” as “times.”  For instance,

12% of $15.00 is 0.12 x $15.00 = $1.80.
Rewrite these and then use your calculator to compute the answers.

(a)  20% of $43.60  ____________________________

           (b)  42% of 7,956  ____________________________

                     (c)  7% of $245.00  ___________________________

                               (d)  61% of 1159  ____________________________

                                         (e)  150% of 360  ____________________________

8.  Some sportscasters will describe an athlete’s effort as “110%.”

Why doesn’t this make literal sense? _______________________

_____________________________________________________

What point is the sportscaster trying to make? ________________

______________________________________________________________

9.  In the fall, Fran’s Fashions bought a new line of winter coats.  Fran
paid $80 wholesale for each coat and marked the price up 40%.

(a)  Put her selling price in the price tag.

In the spring, Fran had one coat left over.  She put it on sale
for 40% off, figuring she would at least break even on that one.

(b)  Would she break even?  _____  Explain. _________________

___________________________________________________________

10.  A restaurant includes a 15% tip in their bills for big parties, and then charges
7% sales tax on the total.  A restaurant across the street charges the 7% sales
tax first and then a 15% tip on the total.  Does it make any difference? Explain.

______________________________________________________________

______________________________________________________________
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Did you know that negative numbers were not commonly used
until a few hundred years ago?  It's true.  Columbus discovered
America more than two centuries before negatives were truly
accepted as numbers.

Activity 4-1

What Are Negative Numbers?

1.  Negative numbers arose when people began to solve problems like this:
“Pedro is 7 years old and his sister Mia is 2.

When will he be exactly twice as old as his sister?”

This translates into solving the equation  7 +         = 2 × (2 +       ).

(a)  Solve this equation.  That is, put the same number in both boxes so that
the two sides are equal.

(b)  Suppose, instead, that Pedro is 13 years old and Mia is 9.  Write the same

kind of equation for this.  Then solve it. ____________________________

(c)  What does your solution mean about Pedro’s and Mia’s ages?__________

____________________________________________________________

2.  The Ancient Greeks ignored negative numbers completely. For example,
Diophantus, who wrote a book about solving equations in the
3rd century, looked at the equation 4x + 20 = 4 and said, “This
is absurd because 4 is smaller than 20.”  What did he mean?

______________________________________________________________

______________________________________________________________

3.  Name three uses of negative numbers in the real world.  For each one,
give an example of what a negative number means.

(1) ___________________________________________________________

(2) ___________________________________________________________

(3) ___________________________________________________________

4.  (a) Sometimes people call a negative number the “opposite” of a positive
number.  What does that mean?  Give an example.

____________________________________________________________

(b)  Is 5 the opposite of –5? _____  Is 5 the opposite of –3? _____  Explain.

____________________________________________________________
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What Are Negative Numbers?

5.  Draw a diagram to illustrate how positive and negative numbers are
“opposites” of each other.  Label it to make your meaning clear.

6.  In his 1707 book, Universal Arithmetick, Sir Isaac Newton said,
“Quantities are either Affirmative, or greater than

nothing, or Negative, or less than nothing.”

(a)  What word would we use instead of “Affirmative” today? _____________

(b)  What did he mean by “less than nothing”? ________________________

7.  (a)  Which is less (smaller), 4 or 6?  ____

(b)  Which is less, –4 or 4?  ____

(c)  Which is less, –4 or 0?  ____

(d)  Which is less, –4 or –6?  ____

(e)  What does it mean to say that one number is less than another?

___________________________________________________________

(f) The symbol for “less than” is <.  The smaller number is on the pointed side.
Arrange these numbers in order from smallest to largest, left to right:

–7, 5, 3, –3, 0, 8, –4, –10, 10, 2, –1

___ < ___ < ___ < ___ < ___ < ___ < ___ < ___ < ___ < ___ < ___

8.  In 1770, Leonhard Euler wrote,

 “Since negative numbers may be considered as debts, because positive
numbers represent real possessions, we may say that negative numbers
are less than nothing. Thus, when a man has nothing of his own, and
owes 50 crowns, it is certain that he has 50 crowns less than nothing; for
if any one were to make him a present of 50 crowns to pay his debts, he
would still be only at the point nothing, though really richer than before.”

A crown was a denomination of money in Euler’s time.  Calculate these sums.
Be prepared to explain them in terms of money.

(a)  –35 + 35 = _____          (b)  –12 + 20 = _____       (c)  –30 + 10 = _____

(d)  14 + (–9) = _____          (e)  22 + (–40) = _____     (f)  –25 + (–50) = _____
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Some of the first people to think of negatives as numbers
lived in India.  Brahmagupta, an Indian scholar of the 7th century,
thought of positive numbers as possessions and negative
numbers as debts. But he also saw a problem: If negatives are
included as numbers, then we must be able to combine them
with each other and with positive numbers using +, –, ×, and ÷.
So Brahmagupta made up the arithmetic rules for negatives.

Activity 4-2

Adding & Subtracting Negative Numbers

1.  If you were helping Brahmagupta, how would you tell him to answer each of
these questions?

(a)  (–7) + (–3) = ____      (b)  7 + (–3) = ____      (c)  (–7) + 3 = ____

(d)  (–6.5) + (–2) = ____      (e)  6.5 + (–2) = ____      (f)  (–6.5) + 2 = ____

3.  Explain your answers to parts a, b, and c of #1 in terms of temperature.

(a) ________________________________________________

________________________________________________

(b) ________________________________________________

________________________________________________

(c) ________________________________________________

________________________________________________

2.  Explain your answers to parts d, e, and f of #1 as possessions or debts.

(d) ________________________________________________

________________________________________________

(e) _____________________________________________

________________________________________________

(f) ________________________________________________

________________________________________________

4.  Write in words a rule for adding numbers when at least one is negative.

______________________________________________________________

______________________________________________________________

______________________________________________________________
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Adding & Subtracting Negative Numbers

5.  Did you have trouble writing your general rule in words?  Brahmagupta faced
that problem, too.  The Indians did all their mathematics in words.  But a few
symbols can make your ideas much clearer, like this:  Suppose a and b are
(positive) whole numbers and a is greater than b.  Fill in the blanks below.
(In Brahmagupta’s time, subtraction only worked if a smaller positive number
was taken from a larger one.)

(–a) + (–b) = ________ a + (–b) = ________          (–a) + b = ________

6.  Brahmagupta knew that subtraction should undo addition.  For instance,
7 – 4 = 3 because 3 + 4 = 7.

How would he have answered each of these questions?

(a)  (–5) – (–2) = ____   Why? ____________________________

(b)  5 – (–2) = ____   Why? ____________________________

(c)  (–5) – 2 = ____   Why? ____________________________

7.  Explain your answers to #6 in terms of possessions and debts.

(a) _______________________________________________

_______________________________________________

(b) _______________________________________________

_______________________________________________

(c) _______________________________________________

_______________________________________________

8.  Suppose a and b are whole numbers and a is greater than b.  Fill in the blanks
below to make Brahmagupta’s subtraction rules.  (Remember: Subtraction of
whole numbers only worked if a smaller number was taken from a larger one.)

(–a) – (–b) = ________ a – (–b) = ________          (–a) – b = ________

9.  Write an expression using either addition or subtraction of negative numbers to
describe each of these situations.

(a)  Fran borrows $600 for insulation and uses a $200
tax credit to help pay for it.  What does she still owe? _________________

(b)  At noon the temperature in Alaska was 5° below zero,
12° higher than it was at dawn.  What was it at dawn? _________________

(c)  Bee Co. is worth $8 million.  It buys Aye Co., which
is $2.5 million in debt.  What is Bee Co. worth now?  __________________



Name:________________________________ Date:_____________

© 2010  William P. Berlinghoff & Fernando Q. Gouvêa  page 1 of 2

Activity 4-3

Multiplying & Dividing Negative Numbers
Let’s use Brahmagupta’s idea of possessions and debts to see how he might

have handled multiplication.

1.  (a)  If I owe 8 people $5 each, how much money do I owe altogether? ______

How did you get your answer? _________________

(b)  How much is my total debt if I owe 30 people $5 each? ______  Is the

answer the same if I owe 5 people $30 each, instead?  ______  Write this

situation using negative numbers. _______________________________

2.  Find each product:

(a)  10 × (–5) = ____                  (b)  (–5) × 10 = ____

(c)  8 × (–7) = _____                  (d)  (–12) × 6 = ____

(e)  4.3 × (–2) = ____                 (f)  (–0.5) × 2.2 = ____

(g)  0.25 × (–3.6) = ____            (h)  (–7) × 1.01 = ____

3.  When a positive number and a negative number are multiplied together,

the answer is _________________ (positive, negative — choose one).

What about the product of two negatives?  Should it be positive or negative?
This confuses many people even today.  But Brahmagupta knew the right answer
1400 years ago. He said then that the product of two negatives must be positive.
To see why, think about the pattern in the next two questions.

4.  (a)  5 × (–6) = ____;  4 × (–6) = ____;  3 × (–6) = ____;  2 × (–6) = ____; ...

As the first number in these products gets smaller, what’s happening

to the product?  ____________________________________________

(b)  Continue this pattern for four more steps:

__ × (–6) = ___;   __ × (–6) = ___;   ___ × (–6) = ___;   ___ × (–6) = ___

5.  Fill in the multipliers of –3 from 4 to –4, and then fill in the products.

  4 × (–3)  =  –12  ; × (–3)  =          ; × (–3)  =          ;

× (–3)  =          ;   0 × (–3)  =          ; × (–3)  =          ;

× (–3)  =          ; × (–3)  =          ; (–4) × (–3)  =
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Multiplying & Dividing Negative Numbers

6.  Terry and Jake took a math quiz.  They both answered (–7) x 4 = ? correctly,
but answered (–7) x (–4) = ? differently.  Terry said 28 and Jake said –28.
Use the idea of cancellation to show them which one is correct.

One important property of multiplication is called cancellation.  For instance, if
3 x n = 3 x 5, we ought to be able to say that n = 5. That is, we ought to be able to
“cancel” the common factor 3.  Use this idea to answer the next question.

7.  Complete each sentence with either positive or negative.

(a)  The product of two positive numbers is ______________.

(b)  The product of a positive and a negative number is _______________.

(c)  The product of two negative numbers is _______________.

(d)  The product of three positive numbers is _______________.

(e)  The product of three negative numbers is _______________.

(f)  The product of one positive and two negative numbers is ______________.

(g)  The product of one negative and two positive numbers is______________.

9.  Complete each sentence with either positive or negative.

(a) A positive number divided by a negative number is _________________.

(b) A negative number divided by a positive number is _________________.

(c) A negative number divided by a negative number is _________________.

_____________________________________________

_____________________________________________

_____________________________________________

_____________________________________________

? ?

8.  As you probably know, division “undoes” multiplication.  For example,
6 ÷ 3 = 2 because 2 x 3 = 6.  This connection told Brahmagupta how
division of signed numbers should work.  See if you can answer these
division questions as he would have.  Then check by multiplying.

(a)  (–20) ÷ 5 = _____.  Check: ___________________

(b)  (–18) ÷ (–6) = _____.  Check: ___________________

(c)   24 ÷ (–4) = _____.  Check: ___________________
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Fitting In
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The Indian rules for signed numbers were learned by the Arabs, who brought
them to Europe in the late Middle Ages.  But the Arabs and early Europeans
always  thought of numbers as positive or zero.  They applied these rules only to
subtractions that ended up with positive numbers.

By the 17th century, the usefulness of negative numbers was becoming too
obvious to ignore.  They had to be included as part of the number system.  But
how and where?  Here are two examples of how mathematicians of the 1600s
struggled to understand negative numbers.

1.  A ratio compares two numbers.  For instance, 2 : 3 and 4 : 6 are ratios.  In fact,
they are the same ratio; they are “in proportion.”  This is traditionally written as
2 : 3 :: 4 : 6, and read “2 is to 3 as 4 is to 6.”

(a)  Write three other ratios in proportion to 2 : 3. _______, _______, _______

(b)  Complete each statement.

5 : 8 :: ___ : 24       1 : ___ :: 3 : 12        2 : 5 :: 8 : ___

(c)  These days, we usually write ratios as fractions and “in proportion”
as equality of fractions.  Write each statement of (b) in fraction form.

________________,    ________________,    ________________

(d)  If 5 : 7 :: k : 50, is k greater or less than 50?  _______________

2.  (a)  Which is larger, 1 or –1? ___  How do you know? ____________________

____________________________________________________________

(b)  True or false: 1 ÷ (–1) = (–1) ÷ 1. _________  How do you know? _______

___________________________________________________________

(c)  Rewrite the equation in (b) as a proportion: ________________________
17th century French scholar Antoine Arnauld argued that this proportion is
nonsense because it says that a larger number is to a smaller as a smaller
number is to a larger.

(d) Use your answers from this sheet to explain Arnauld’s argument.

____________________________________________________________

____________________________________________________________

(e)  How would you reply to Arnauld?  ________________________________

____________________________________________________________



Fitting In

3.  Are negative numbers really less than 0?  In 1655, British mathematician John
Wallis wrote that, if negative numbers are less than 0, they must be greater
than infinity!  His paradox depends on the following ideas.

(a)  Write the value of each fraction beneath it:

(b)  What is happening to the value of these fractions as the denominators get

closer to 0?__________________________________________________

(c)  What would John Wallis have said about the size of     ? ______________

Why? ______________________________________________________

(d)  Is –1 < 0?_______ How did Wallis relate this to the size of       ?

___________________________________________________________

(e)  Is       = –3 ? _____  Explain. __________________________________

(f)  Summarize Wallis’s argument that –3 is greater than infinity.

____________________________________________________________

____________________________________________________________

____________________________________________________________

(g) Can this argument be used for any negative number, or is –3 special in

some way? Explain.____________________________________________

____________________________________________________________

3
1

3
0.1

3
0.01

3
0.001

3
0.0001

3
0.00001

3
0.000001

3
–1

3
0

3
–1

4.  How would you resolve Wallis’s paradox that negative numbers are both less
than 0 and greater than infinity?

______________________________________________________________

______________________________________________________________

______________________________________________________________
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Activity 4-5

Powers and Roots
One reason why people of Shakespeare’s time resisted negative

numbers was related to finding powers and roots.  To understand
their suspicions, we begin with a quick review of powers and roots.

1.  A power of a number is a repeated product of the number.  Its exponent
counts how many copies of the number are multiplied together.  For example,

5³ = 5·5·5 = 125
Write each power as a repeated product and calculate it.

(a)  34 = __________ = ____               (b)  (–7)3 = __________ = ____

(c)  (–6)2 = ________ = ____               (d)  (–2)6 = _______________ = ____

(e)  (–2)5 = _____________ = ____     (f)  (–5)4 = ___________ = ____

2.  Answer each question positive or negative.

(a) (–10)4 is _____________.             (b)  (–10)5 is _____________.

(c) (–24)15 is _____________.            (d)  (–37)42 is _____________.

(e)  Any even power of a negative number is ______________.

(f)  Any odd power of a negative number is ______________.

3.  Justify your answers to 2(e) and 2(f)._________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________
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If a² = b, then b is called the square of a,
and a is called a square root of b.  For
instance, 9 is the square of 3, and 3 is a
square root of 9.  We write 9 = 3², and √9 = 3.

b a

a

9 3

3

Nowadays we would say that 9 has two square roots, 3 and –3, because
(–3)2 = 9, too.  But 16th and 17th century mathematicians did not accept
negative answers.  They thought of solving x2 = 9 as finding the side length
of a square with area 9, so negative answers made no sense to them.  They
called an answer such as –3 a false root (or false solution).



Powers and Roots
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4.  Find both square roots in each case.

(a)  If x2 = 4, x = ___ or ___                 (b)  If x2 = 25, x = ___ or ___

(c)  If x2 = 36, x = ___ or ___               (d)  If x2 = 0.25, x = ____ or ____

(e)  If x2 = 0.09, x = ____ or ____        (f)  If x2 = 0.0001, x = _____ or _____

The two square roots of a number often are written with a ± sign.  For instance,
±√9 stands for +3 and –3.  Once 17th and 18th century mathematicians began to
place negative numbers on a number line to the left of 0, it was easy to see that
the two square roots of a number should always be the same distance from 0, on
opposite sides.

5.  (a) A number that is the square of an integer is called a perfect square.
The first four perfect squares are 1, 4, 9, 16.  List the next eight.

_____,  _____,  _____,  _____, _____,  _____,  _____,  _____
(b)  To roughly estimate the square roots of a number, locate it between

perfect squares, like this:  13 is between 9 and 16, so

Place each of these ten square roots on the number line below.

0 1 2 3 4 5 6–6 –5 –4 –3 –2 –1

0 1 2 3 4 5 6–6 –5 –4 –3 –2 –1
-√13 √13

±√30 ±√19 ±√3 ±√7±√11

7.  One property of negative numbers troubled the mathematicians of the 1500s
and 1600s: Square roots of negatives could not be either positive or negative!
Explain why not.

______________________________________________________________

______________________________________________________________

6.  (     )2 = ___       (–     )2 = ___       (       )2 = ___       (     )2 = ___√6 √6 √–6 √a

8.  The equation x4 = 1 has 4 solutions: 1, –1,       , and –       .

(a)  Show how         and –        are solutions. ___________________________

____________________________________________________________
(b)  In the 1700s, French mathematician René Descartes called square roots

of negative numbers imaginary, and they are still called that today.
The two imaginary solutions for x4 = 81 are _______ and _______.

√–1 √–1

√–1√–1
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